# Stressor cruise 27<sup>th</sup> April - 12<sup>th</sup> of May 2019



Edited by Sünnje L. Basedow









### 1. Aim and background

This was the first cruise of the Norwegian-Chinese collaborative effort to better understand how mesoscale physical, biogeochemical and biological processes are coupled in two contrasting shelfslope-ocean ecosystems, as part of the Stressor project (2019-2021, financed jointly by the Norwegian Research Council and the National Natural Science Foundation of China). This year, we went to the shelf break area in the northern Norwegian Sea, outside the Lofoten-Vesterålen islands. This area was chosen firstly because it is known to be an area of high eddy activity, and secondly because very large surface aggregations of the copepod *Calanus finmarchicus* were observed here during previous research cruises. During our cruise we deployed two autonomous platforms, a Sailbuoy equipped with broadband acoustics, and a SeaGlider equipped with CTD and hydrophone, amongst other things. The gliders were partly financed and operated in cooperation with the Glider project (lead by Akvaplanniva, financed by Conoco Phillips). These platforms surveyed our study area until the end of May, i.e. for about one month. In addition, our cruise was supported by satellite data, which were used to locate red surface patches of Calanus spp. (in cooperation with NEODAAS, U.K.), and to derive altimetry data for the modelling of Lagrangian Coherent Structures (in cooperation with the Chinese Academy of Sciences). By this extensive sampling we aim to determine how mesoscale processes and copepod behaviour interact to form these tremendously large surface aggregations. For public outreach, three artists joined the cruise, and we took pupils and teachers for sampling in Austnesfjorden for one day, in cooperation with Aust-Lofoten secondary school and the Northern Norwegian Artist Center.

#### 2. Cruise Participants

| N | ame | , |
|---|-----|---|
|---|-----|---|

| Name                    | Main role during cruise  |
|-------------------------|--------------------------|
| 1. Sünnje Basedow       | cruise leader, MVP-LOPC  |
| 2. Stig Falk-Petersen   | Multinet, pelagic trawl  |
| 3. Zhaoru Zhang         | MVP-LOPC                 |
| 4. Yiwu Zhu             | LISST                    |
| 5. Nicholas Weidberg    | Multinet, pelagic trawl  |
| 6. Yisen Zhong          | ADCP, LADCP              |
| 7. Hans Dybvik          | engineer, MVP, gliders   |
| 8. John-Terje Eilertser | engineer, MVP, gliders   |
| 9. Walker Smith*        | Chlorophyll, nutrients   |
| 10. Yonghui Gao         | Flow-Through System      |
| 11. Kim Last            | WP2 Calanus experiments  |
| 12. Jordan Grigor       | WP2, Calanus experiments |
| 13. Hailong Liu         | CTD                      |
| 14. Rui Meng            | Chlorophyll              |
| 15. Sofia Aniceto       | Whale observation        |
| 16. Huizi Dong          | LCS data                 |
| 17. Ziquiang Su         | LADCP, EK60              |
| 18. Congwen Shan        | LISST                    |
| 19. Mathilde Servan     | WP2, pigments            |
| 20. Paulina Urban*      | eDNA                     |
| 21. Guillaume Schuler   | Multinet, pelagic trawl  |
| 22. Yuan Yu             | Flow-Through System      |
| 23. Michaela Casková    | Blog, artist             |
| 24. Toril Johannessen'  | Artist                   |
| 25. Anna Naumann*       | Artist                   |
| *until 6th May          | **from 6th May           |

E-mail

sunnje.basedow@uit.no stig.falk.petersen@akvaplan.niva.no zrzhang@sjtu.edu.cn viwuzhu@sjtu.edu.cn j weidberg@hotmail.com visen.zhong@sjtu.edu.cn hans.dybvik@uit.no john-terje.eilertsen@uit.no wos@vims.edu ygao80@situ.edu.cn kim.last@sams.ac.uk jordan.grigor@sams.ac.uk liuhailong@gmail.com mengrui0101@163.com ana.s.aniceto@uit.no huizidong@situ.edu.cn zhiqiangsu situ@situ.edu.cn shancongwen320@sjtu.edu.cn servanmathilde7@gmail.com paulina.urban@mail.de <u>schulergg@gmail.com</u> vuv1110@163.com eseleim@seznam.cz toril.johannessen@gmail.com anna.i.naumann@gmail.com

# 3. Study area

The Lofoten-Vesterålen marine ecosystem is extremely rich in biodiversity and is a key area for commercially and ecologically very important fish species (cod, herring). Many of the most vulnerable life stages are concentrated in this area, and it is an important breeding area for many seabirds. Also high numbers of marine mammals are observed here, and a system of cold water corals is found. Therefore the area has been designated as one of the seven 'especially valuable and vulnerable areas' by the Norwegian government. The high productivity is due the frontal system between the North Atlantic Current that flows along the shelf break and meets with the Norwegian Coastal current that flows along the coast. Off Lofoten-Vesterålen the shelf break is narrow such that the frontal system is found close to the coast. The area is also characterised by a high eddy activity. Deeper channels in the area can bring Atlantic Water and species closer to the coast, which is probably an important factor of replenishing the population of *Calanus finmarchicus* in Vestfjorden during winter. Cod eggs spawned inside Vestfjorden and developing larvae are eventually transported out of the fjord system and drift northwards into the Barents Sea with the prevailing currents. They feed mainly on nauplii of *C. finmarchicus* and are thus dependent on a match in time and space with high abundances of nauplii and hence on a large overwintering stock of *C. finmarchicus*.



Fig. 1: Study area with sampled transects (T1-T17, red lines) and stations (St. 1 - St. 28, red dots). The red dot very close to station 2 is station 15. The red dot in the vicinity of Svolvær is our sampling station with the pupils, in Austnesfjorden.

# 4. Cruise narrative (all times UTC)

After cleaning the pipes of the seawater intake to inhibit bacterial growth, which would interfere with oxygen measurements of the underway flow-through system, we left Tromsø on **27 April** at 13:00 in calm and sunny weather, and arrived in our study area in the evening. At midnight we started sampling transect 1 (Fig. 1) with the MVP, from the coastal end towards the offshore end, through Hola canyon. A few problems with the MVP, hopefully nothing too bad. The transect was completed around 8 in the morning on **28 April**. We then set out the SeaGlider. which went very well, and sea conditions were really calm. After deploying the SeaGlider, we completed our first station (St. 1) at the offshore end of transect 1, then went back along the transect and sampled St. 2 in the middle of the line and St. 3 at the end, where there were high surface abundances of *C. finmarchcius*. St. 3 was completed around midnight of **29 April**.

While waiting for the first results from the LCS modelling and for satellite images, we sampled the canyon outside Vestvågøy island, starting with St. 4 at the coastal end, and then starting with transect 2 with the MVP. Lots of problems with the MVP, resulting from a broken cable. While detecting and luckily fixing the error, we sampled with the pelagic trawl (upper 30 m and at 105 m depth), and then completed transect 2, which was finished late evening. On **April 30** at midnight we sampled St. 5 at the offshore end of transect 2, and then St. 6 at the shelf break, also a pelagic trawl here. Weather was getting more windy.

Based on the LCS results we selected an area outside Røst island for further study, and placed four transects (T1-T4) such that eddies could be resolved (8 km apart, close to Rossby radius). Unfortunately, when we arrived in the area around 18:00, it was very windy, and the only instrument that could be deployed at St. 7 (coastal end of transect 3) was the CTD. With some difficulties due to rough seas, from the evening of the 30 April to midday **2 May**, we sampled the transects with the MVP, which went relatively well when using deployment mode 'continuous rpm' and we were able to complete all four transects. Weather conditions were still less than optimal, we could only deploy the CTD at St. 8 (coastal end of transect 6).

Because of the weather conditions we went to a wind-protected coastal station, St. 9, and started sampling there around 20:00 on 2 May. So far the coastal stations seemed to have the highest abundances of red copepods in the upper meter, somewhat contrasting satellite images that show red color at the shelf break. Afterwards weather conditions had improved somewhat. We sampled T7 from coast (St. 9) to offshore with the MVP, and then sampled three stations (St. 10 to St. 12) along the line. Locations of stations were selected based on physical features and copepod abundances as seen from the MVP data. This sampling was completed around midnight, finishing with a pelagic trawl.

For the remaining time before our trip to Svolvær for exchange of cruise participants, we decided to re-sample transect 1 (new sampling named transect 8) starting from the offshore end (St. 13) in the morning on **4 May** towards the coast (St. 14). We started sampling at the offshore end with a pelagic trawl, and sampling at the coastal end was finished in the morning of **5 May**. Based on the collected data along the transect we selected and sampled St. 15 and St. 16 along transect 8, finishing in the evening and then heading towards Svolvær through Raftsundet.

On **6 May**, three participants (Walker Smith, Pauline Urban and Anna Naumann) left the cruise in Svolvær. Most other cruise participants left the ship for half a day in Svolvær, apart from Sünnje Basedow, Kim Last and Mathilde Servan. In cooperation with the Northern Norwegian Artist Centre and with Aust-Lofoten Vidergående Skole we then took a responsible from NNKS, and teachers and pupils from the school for basic sampling of nutrients, chlorophyll and zooplankton in Austnesfjorden. At 14:00 we delivered those back to Svolvær and picked up the cruise participants, plus one new artist (Toril Johannessen) and left around 16:00.

Based on data collected so far, and on satellite data and general considerations, we decided to sample a narrow part of the shelf break (T9 to T14) as a contrast to the wide part that was sampled earlier on (T3 to T6). We started sampling around midnight on May 6, with a station (St. 17) at the coastal end of T9 and then sampled parallel transects across the shelf break (T9 to T14) with the MVP. T10 was placed to re-sample part of T1/T8, and T14 re-sampled part of T7. This sampling was finished around midday on **May 8**. In that area we then sampled a large number of stations (St. 18 to St. 28) from **May 8 to May 10**, placed to cover varied conditions in abiotic and biotic factors. Weather conditions were favourable now.

We used the remaining cruise time to re-sample again T1/T8, from coast to offshore and return (T15/T16), and finalised by sampling T17 just to the north of it and including T9. Sampling was finished in the afternoon of **May 11**, and we then headed to Tromsø where we arrived in the morning.

# 5. Scientific program

# 5.1. Satellite ocean dynamics and LCS modelling

Huizi Dong (SJTU)

Aim

Combined with radar altimetry data, I want to understand the *C. finmarchicus* blooms from the perspective of the ocean physical process. Ocean surface geostrophic currents in our cruise region will be calculated using satellite sea surface height. Using Lagrangian coherent structure model to analyse the horizontal advection and variations during this cruise for 16 days. Under the background of coastal-open ocean Lagrangian latitudinal and longitudinal transport, we want to know how the *C. finmarchicus* moves during these days, and how they were influenced by ocean currents.

### Methods: Lagrangian Coherent Structures (LCS) and FSLEs

The starting point of the Lagrangian Coherent Structures analysis presented in the remaining part of the work is:  $\dot{x} = v (x, t)$ , represents the trajectory of a particle seeded on the domain. In the equation, v is independent of t, we can find invariant manifolds. Backward-in-time FSLEs ridges approximate the so-called Lagrangian Coherent Structures (LCS) which are the generalization of stable hyperbolic trajectories of time independent flow. They are defined as the larger eigenvalues of the Cauchy-Green strain tensor of the flow map. FSLEs are strongly linked with the exponential rate  $\lambda$  of separation of two neighboring particles during a time advection t:

$$\Lambda(\boldsymbol{x}, \, \delta_0, \, \delta_f) = \frac{1}{|\tau|} \log \left( \frac{\delta_f}{\delta_0} \right)$$

The method was initiated by F. d'Ovidio (2004). LCS are widely used to characterize horizontal dynamics. Hyperbolic LCS are distinguished material lines that exert locally the strongest attraction and repulsion on nearby trajectories. Being material lines LCSs behave as transport barriers, not being crossed by tracers.



Fig. 2: LCS modelling

#### **Preliminary results**

Two relatively stable eddies can be found in the LCS results. One is on the shelf break region. Another one is located at 12°E 67°N or so, which may be induced by island. Our cruise transects T3- T6 were planned because of the fronts and relatively strong transports. From the latitude advection initial results, nutrients and primary production may be transported by cross slope transport during the bloom season.

From previous papers, the overwintering population migrates from the hibernation depth of > 500 m into surface waters along the shelf slope area in spring, and is then carried by the Norwegian Atlantic Current (NAC) and the Norwegian Coastal Current northward. Populations intrude onto the shelf and into coastal fjords by this mesoscale currents (Zhu et al. 2009). So during the bloom season, the horizontal moving of *C. finmarchicus* may be highly induced by cross slope mesoscale eddies and currents. These initial results need to be verified by further calculations.



Fig. 3: LCS results from 6 May 2019

### References

d'Ovidio F., V. Fernández, E. Hernández-García, C. López, 2004, "Mixing structures in the Mediterranean sea from Finite-Size Lyapunov Exponents", Geophys. Res. Lett., 31, L17203. Cotté C., F. d'Ovidio, A. Chaigneau, M. Lévy, I. Taupier-Letage, B. Mate, C. Guinet, 2011, "Scale dependant interactions of Mediterranean whales with marine dynamics", Lym. Ocean. 56(1), 219-232. Zhu, Y., K.S. Tande, and M. Zhou, Mesoscale physical processes and zooplankton productivity in the northern Norwegian shelf region, Deep–Sea Research II, 56, 1922-1933, 2009.

### 5.2. Ocean current measurements

Yisen Zhong (SJTU)

# 5.2.1. Vessel-Mounted ADCP

A ship-mounted 75kHz RDI Ocean Surveyor ADCP was used to collect current data under the way. The ADCP recorded the data through the whole cruise path. The position and heading feed are from Seapath GPS and gyro. The basic parameters for ADCP setup included broadband mode for high resolution, 8 m bin size, 8 m blank distance, 100 layers, transducer angle -1.84 degree, salinity 34 psu, pinging triggered by EK60 to reduce the interference between the instruments. The ship draft is about 6.5 m. The drop keel where the ADCP is mounted was lowered by approximately 3.5 m at 16:15 on May 1, 2019 (UTC), in order to avoid the bubble layer due to the severe sea condition. The ADCP was restarted and the new data file starts from no. 35. The keel was lifted up at 17:45 on May 5 (UTC) and then lowered again at 12:31 on May 7 (UTC). These changes were not accompanied by changes of data file names. This needs to be taken into consideration when post-processing the data. The name of the ADCP data file is Stressor0XX\_0000YY.ZZZ, where XX is deployment number from 29 to 36 in this cruise, YY is file sequence number and ZZZ is the file extension.

The preliminary processing of the ADCP data was conducted using CODAS during the cruise. The processing used LTA (300 s averaged) data files. The detailed single-pinging file (ENR) processing is left after the cruise. The tidal components were calculated using TPXO model and removed from the measured currents.

A total of 17 transects were planned to tow the MVP. The spacings between T3, 4, 5, 6 are around 8 km, approximately the Rossby deformation radius, which aims to investigating the mesoscale processes and their impacts on the biology in this region. The rest transects are located in a steeper slope region, where the current is much stronger.

Figures 4 and 5 show the currents at 30 m and 100 m depth respectively. The velocities are very similar at these two depths, indicating a vertically homogeneous flow in the shelf and the upper layer of the deep basin. In the T3-6 region, there are two branches of northeastward currents between 200 m and 1000 m isobaths (Figures 4 & 5 left panels). They merge into one stronger current when they arrive the steeper slope downstream, and then seemingly veer offshore with a much greater speed (Figure 4 & 5 right panels). The current on the shelf is to the opposite direction in the T3-6 region but is weak along T2 and T3 transects.



Fig. 4: The measured current at 30m depth along the transects



Fig. 5: The measured current at 100 m depth along the transects

Figures 6-13 show the across- and along-transect velocities at each transect. The currents are nearly barotropic in the upper 400 m at all transects. As presented above, currents with alternating direction can be seen at the T3-5 transects in the slope region, and finally they merge into one at the T6 transect. The slope current is more intense when the slope becomes steeper at the T2 transect.



Figure 6: Across-transect velocity (top) and along-transect velocity (bottom) at Transect 3. Positive across-transect velocity indicates a northeastward direction. Positive along-transect indicates an offshore direction.



Figure 7: Same as Figure 6 but for Transect 4.



Fig. 8: Same as Figure 6 but for Transect 5.



Fig. 9: Same as Figure 6 but for Transect 6.



Fig. 10: Same as Figure 6 but for Transect 1.



Fig. 11: Same as Figure 6 but for Transect 2.



Fig. 12: Same as Figure 6 but for Transect 7.



Fig. 13: Same as Figure 6but for Transect 8.

# 5.2.2. Lowered ADCP

A RDI 300 kHz Lowered ADCP was deployed together with the CTD. The data file is listed below.

Table 1: Overview over LADCP data files.

| Station No. | File name             | Notes          |
|-------------|-----------------------|----------------|
| 3           | sta409_LADCPM.000.000 |                |
| 3           | sta409_LADCPM.001.000 | Test data file |
| 4           | sta415_LADCPM.000.000 |                |
| 5           | sta426_LADCPM.000.000 |                |
| 6           | sta432_LADCPM.000.000 |                |
| 8           | sta443_LADCPM.000.000 |                |
| 9           | sta445_LADCPM.000.000 |                |
| 10          | sta460_LADCPM.000.000 |                |
| 11          | sta465_LADCPM.000.000 |                |
| 12          | sta470_LADCPM.000.000 |                |
| 13          | sta480_LADCPM.000.000 |                |
| 14          | sta485_LADCPM.000.000 |                |
| 15          | sta500_LADCPM.000.000 |                |
| 16          | sta502_LADCPM.000.000 |                |
| 17          | sta516_LADCPM.000.000 |                |
| 18          | sta522_LADCPM.000.000 |                |
| 19          | sta529_LADCPM.000.000 |                |
| 20          | sta530_LADCPM.000.000 |                |
| 21          | sta539_LADCPM.000.000 |                |
| 22          | sta544_LADCPM.000.000 |                |
| 23          | sta551_LADCPM.000.000 |                |
| 24          | sta552_LADCPM.000.000 |                |
| 25          | sta567_LADCPM.000.000 |                |
| 26          | sta568_LADCPM.000.000 |                |
| 27          | sta577_LADCPM.000.000 |                |
| 28          | sta581_LADCPM.000.000 |                |

# 5.3. CTD-sampling & weather log

Sünnje Basedow (UiT)

CTD profiles were taken using the CTD onboard R/V Helmer Hanssen. The CTD consists of a Seabird Electronics (SBE) 911plus package with conductivity cell (SBE 4c, S/N 2666), temperature sensor (SBE 3plus, S/N 4497), pressure sensor (S/N 77984), dissolved oxygen (SBE 43, S/N 2557), a Seapoint fluorometer (S/N 3049) and turbidity meter (S/N 10894), and a Satlantic PAR sensor (S/N1060). All Seabird Electronics sensors were recently calibrated. The instruments were provided by UiT; details including maintenance calibration can be obtained from the UiT BFE technicians (John-Terje Eilertsen). The sensors are mounted on a rosette with 12 51 Niskin sampling bottles to collect water samples.

The CTD was controlled via the SBE Seasave software installed on a PC in the instrument room. GPS information (NMEA string) was added to the files automatically from the ship's Seapath positioning system. Surface irradiance was measured by a Biospherical/Licor PAR/irradiance sensor (S/N 6329) mounted on deck, and data was recorded together with the CTD profiles. Preliminary postprocessing was done after each cast using a SBE32 batch script written by the UiT technicians which calls the SBE data processing routines provided on the SBE website. Fine-calibration of the conductivity cell and final postprocessing will be done in Tromsø after the cruise.

28 stations were sampled with the CTD, an overview is given in Table 2. At most stations the CTD was deployed together with a LADCP, see section 5.2.2, Table 1. Salinity samples were taken at selected stations and depths (Table 2), and will be measured at UiT using an Guildline Portasal

salinometer for calbration of the conductivity cell. For other sampling from the Niskin bottles (nutrients, chlorophyll ...) refer to later sections of this cruise report.

Table 2. CTD stations

| Ship stn | Date<br>DD/MM/YY | Start<br>time<br>UTC | Project<br>station | Latitude (N) | Longitude (E) | Bottom depth<br>(m) | Salinity<br>sample<br>depths (m) |
|----------|------------------|----------------------|--------------------|--------------|---------------|---------------------|----------------------------------|
| 392      | 28/04/19         | 09:14                | St 1               | 69 28.61     | 13 20.41      | 2762                | 603                              |
| 401      | 28/04/19         | 16:18                | St 2               | 69 06.02     | 14 06.44      | 778                 | 600                              |
| 409      | 28/04/19         | 21:41                | St 3               | 68 51.56     | 14 38.06      | 150                 | 150                              |
| 415      | 29/04/19         | 04:57                | St 4               | 68 15.77     | 13 19.29      | 142                 | 126                              |
| 426      | 29/04/19         | 21:58                | St 5               | 68 55.28     | 11 59.45      | 2704                | 600                              |
| 432      | 30/04/19         | 03:42                | St 6               | 68 44.07     | 12 23.92      | 739                 | 600                              |
| 441      | 30/04/19         | 17:58                | St 7               | 67 44.83     | 10 59.92      | 226                 | 217                              |
| 443      | 02/05/19         | 10:45                | St 8               | 67 58.47     | 11 19.16      | 185                 | 175                              |
| 445      | 02/05/19         | 20:06                | St 9               | 68 33.05     | 14 21.75      | 224                 | 211                              |
| 460      | 03/05/19         | 12:26                | St 10              | 68 59.28     | 12 54.93      | 1622                | 600                              |
| 465      | 03/05/19         | 18:10                | St 11              | 68 45.19     | 13 35.32      | 93                  | 84                               |
| 470      | 03/05/19         | 20:23                | St 12              | 68 51.47     | 13 18.28      | 621                 | 598                              |
| 480      | 04/05/19         | 14:45                | St 13              | 69 29.01     | 13 18.45      | 2772                | 600                              |
| 485      | 05/05/19         | 05:25                | St 14              | 68 51.02     | 14 32.54      | 175                 | 166                              |
| 500      | 05/05/19         | 12:34                | St 15              | 69 05.57     | 13 58.51      | 725                 | 600                              |
| 502      | 05/05/19         | 16:27                | St 16              | 68 54.54     | 14 23.86      | 266                 | 250                              |
| 516      | 06/05/19         | 23:55                | St 17              | 69 00.44     | 14 25.84      | 86                  | 76                               |
| 522      | 08/05/19         | 12:00                | St 18              | 68 44.26     | 13 38.61      | 85                  | 75                               |
| 529      | 08/05/19         | 15:40                | St 19              | 68 50.59     | 13 39.69      | 108                 | 95                               |
| 530      | 08/05/19         | 17:07                | St 20              | 68 56.93     | 13 24.33      | 765                 | 601                              |
| 539      | 09/05/19         | 01:07                | St 21              | 69 01.88     | 13 12.73      | 2219                | 600                              |
| 544      | 09/05/19         | 07:10                | St 22              | 69 00.05     | 13 37.12      | 573                 | 593                              |
| 551      | 09/05/19         | 11:38                | St 23              | 68 54.80     | 14 07.67      | 169                 | 150                              |
| 552      | 09/05/19         | 13:11                | St 24              | 69 04.53     | 14 03.52      | 500                 | 482                              |
| 567      | 09/05/19         | 23:08                | St 25              | 69 12.47     | 13 49.46      | 1750                | 601                              |
| 568      | 10/05/19         | 00:31                | St 26              | 69 11.99     | 14 02.96      | 1384                | 601                              |
| 577      | 10/05/19         | 09:45                | St 27              | 69 06.64     | 14 16.06      | 476                 | 406                              |
| 581      | 10/05/19         | 11:23                | St 28              | 69 01.60     | 14 24.03      | 73                  | 63                               |

# Weather log

Position, meteorological data from the DNMI weather station onboard (air temperature, air pressure, wind speed, wind direction, humidity) and depth from the EK60 echosounder were logged automatically every minute throughout the cruise.

# 5.4. Phytoplankton

# 5.4.1 Primary production and phytoplankton physiology

Yuan Yu (SJTU)

# Aim

My work aims to find out the mechanism of how environmental factors will influence physiological status of phytoplankton and to figure out the component of phytoplankton community in Norwegian sea in this time period. These environmental factors include the variation of nutrients, predators and some physical factors, such as currents, sea water temperature, eddies and so on.

#### Method

Phyto-PAM, a multiple excitation wavelength phytoplankton photosynthesis analyzer was used to measure fluorescence of phytoplankton under different light conditions. Water samples were collected from CTD from different depth as well as underway water pump from ca. 5.5-meter depth along each transects. After 15 minutes dark adaption, we assume that all the reaction centers of PSII of

phytoplankton in water samples are closed. Then, a saturation pulse can excite its maximum quantum yield ( $F_V/F_M$ ), which is an indicator of physiological status of phytoplankton. Actual quantum yield and non-photochemical quenching (NPQ), which indicated the potential ability of self-protection of phytoplankton were measured simultaneously. Phytoplankton photosynthesis fluorescence light curve (FLC) shows the fluorescence value of phytoplankton samples under gradient intensity of actinic light. So we can get  $\alpha$ ,  $E_k$ ,  $I_{max}$  from each light curve, which indicate the ability of phytoplankton to adapt the variance of light during photosynthesis.  $E_k$ ,  $\alpha$  and  $I_{max}$  represent efficiency, maximum electron transport rate and saturating light intensity of phytoplankton, respectively. 81 records of fluorescence after dark adaption and 80 records of FLC were measured during this cruise.

Besides, 48 phytoplankton samples were fixed by Lugol's solution after filtering through a 150  $\mu$ m mesh. These samples will be observed and calculated under microscope in order to figure out the component of phytoplankton community.

There were 305 filter samples collected, using 0.45µm pre-combusted GF/F filter. And primary production will be generally estimated by chlorophyll concentrations, using the following two equations (Harding, 2002):

$$log PP(net) = 0.9460 + 0.6355 log Chl a + 0.8611 log tE_0 + 0.8133 logZ_p + 0.2017 log D_{irr} + 1.2638 log SST + 0.5571 log H$$

 $log PP (gross) = 0.1619 + 0.7721 logChl a + 2.0344 log tE_0 + 0.8115 log Z_p + 0.0342 log D_{irr} + 1.2817 log SST$ 

On May 7<sup>th</sup>, there were several transects run by the MVP. Along one of those transects, underway water was collected every 10 minutes (Table 3). Each sample was put in a dark bottle for 15 minutes in order to shut off all RC of PSII to get the maximum potential fluorescence of phytoplankton samples. Then samples were used to get  $F_V/F_M$ , NPQ and FLC, using PAM. Finally, physical, chemical and biological information along this transect will be analyzed comprehensively to figure out its interaction with each other.

| No. | UTC<br>time | Latitude | Longitude | No. | 最高波<br>长 | $F_V/F_M$ | No.LC |
|-----|-------------|----------|-----------|-----|----------|-----------|-------|
| 1   | 18:12:01    | 69,07.07 | 13,21.63  | 32  | 590      | 0.533     | 33    |
| 2   | 18:22:36    | 69,06.56 | 13,22.72  | 34  | 590      | 0.57      | 35    |
| 3   | 18:32:31    | 69,06.07 | 13,23.75  | 36  | 440      | 0.466     | 37    |
| 4   | 18:42:28    | 69,05.59 | 13,24.79  | 38  | 590      | 0.63      | 40    |
| 5   | 18:53:42    | 69,05.03 | 13,25.98  | 41  | 590      | 0.56      | 42    |
| 6   | 19:02:52    | 69,04.57 | 13,26.95  | 43  | 590      | 0.53      | 44    |
| 7   | 19:12:31    | 69,04.89 | 13,27.96  | 45  | 590      | 0.65      | 46    |
| 8   | 19:23:17    | 69,03.55 | 13,29.12  | 47  | 590      | 0.653     | 48    |
| 9   | 19:33:18    | 69,03.03 | 13,30.21  | 49  | 590      | 0.594     | 50    |
| 10  | 19:42:22    | 69,02.55 | 13,31.23  | 51  | 590      | 0.639     | 52    |
| 11  | 19:53:12    | 69,02.01 | 13,32.39  | 53  | 590      | 0.683     | 54    |
| 12  | 20:03:30    | 69,01.50 | 13,33.47  | 55  | 590      | 0.57      | 56    |
| 13  | 20:13:12    | 69,01.02 | 13,34.46  | 57  | 590      | 0.51      | 58    |
| 14  | 20:23:15    | 69,00.50 | 13,35.55  | 59  | 440      | 0.49      | 60    |
| 15  | 20:33:20    | 69,00.00 | 13,36.62  | 61  | 590      | 0.64      | 62    |
| 16  | 20:42:41    | 68,59,52 | 13,37.64  | 63  | 590      | 0.57      | 64    |
| 17  | 20:53:21    | 68,58.96 | 13,38.81  | 65  | 590      | 0.7       | 66    |
| 18  | 21:03:04    | 68,58.45 | 13,39.88  | 67  | 590      | 0.57      | 68    |
| 19  | 21:13:21    | 68,57.91 | 13,41.02  | 69  | 590      | 0.65      | 70    |
| 20  | 21:37:03    | 68,56.61 | 13,43.76  | 71  | 440      | 0.5       | 72    |

*Table 3. Samples collected 7<sup>th</sup> of May* 

Table 4. Samples collected from different depth of 28 stations.

| Date                                   | UTC   | St.        | Latitude    | Longitude | Depth    | Amount                | Nutrient | Fixed<br>phytoplankton | PAM<br>record No. |
|----------------------------------------|-------|------------|-------------|-----------|----------|-----------------------|----------|------------------------|-------------------|
|                                        |       |            |             |           | 5        |                       | Y        | Y                      | 1                 |
|                                        | 17:20 | S2         | 69 06.01    | 14 06.44  | 10       |                       | Y        | Y                      |                   |
|                                        |       |            |             |           | 30       |                       | Y        | Y                      |                   |
| 4.28                                   |       |            |             |           | 5        | 4                     | Y        |                        |                   |
|                                        | 22:07 | <b>S</b> 3 | 68 51 31    | 14 37 66  | 10       | 4                     | Y        |                        |                   |
|                                        | :06   |            | 0001.01     | 1157.00   | 30       | 4                     | Y        |                        |                   |
|                                        |       |            |             |           | 55       | /                     | /        | /                      | 2324              |
|                                        | 5.11. |            |             |           | 0.8      | 1                     | v        | V                      | 1718              |
|                                        | 56    | S4         | 68 15.63    | 13 19.15  | 10.4     | 2                     | I<br>V   | V                      | 1020              |
| 4.29                                   | 50    |            |             |           | 20.6     | 2                     |          | I<br>V                 | 2122              |
|                                        |       |            |             |           | 29.0     | 2                     | I<br>V   | I<br>V                 | 56                |
|                                        |       | S5         | 68 54       | 11 56     | 20       | 2                     | I<br>V   | ľ                      | <u> </u>          |
|                                        |       |            |             |           | 5.0      | 3                     | Y<br>V   | V                      | /8                |
|                                        |       |            |             |           | 5.3      | 4                     | Y        | Y                      | 911               |
|                                        | 4:50  | S6         | 68 44.07    | 12 24.39  | 9.3      | 4                     | Y        | Y                      | /8                |
| 1.00                                   |       |            |             |           | 19.9     | 2                     | Y        | Y                      | 56                |
| 4.30                                   |       |            |             |           | 29.6     | 4                     | Y        | Y                      | 34                |
|                                        |       |            |             |           | 5        | 3                     | Y        | Y                      | 1819              |
|                                        | 18:40 | S7         | 67 46.91    | 10 55.20  | 10       | 3                     | Y        | Y                      | 2021              |
| 18       11       5.2       20       : |       |            |             |           | 30       | 3                     | Y        | Y                      | 2324              |
|                                        |       |            |             |           | 5        | 2                     | Y        | Y                      | 1314              |
|                                        | 11:04 | 58         | 67 56 53    | 11 10 03  | 10       | 3                     | Y        | Y                      | 567               |
|                                        | :27   | 50         | 07 50.55    | 11 19.05  | 30       | 2                     | Y        | Y                      | 1112              |
| 5.2                                    |       |            |             |           | 75       | 3                     | Y        | Y                      | 8910              |
| 3.2                                    |       |            |             |           | 5.2      | 2                     | Y        | /                      | 2122              |
| 20:29<br>:33                           |       | (0.22.02   | 14 01 40    | 10.9      | 2        | Y                     | /        | 1920                   |                   |
|                                        | 59    | 08 32.83   | 14 21.43    | 20.5      | 2        | Y                     | Y        | 1718                   |                   |
|                                        |       |            |             |           | 40.4     | 2                     | Y        | /                      | 1516              |
|                                        |       |            |             |           | 4.3      | 4                     | Y        | Y                      | 89                |
|                                        | 12:41 |            | <pre></pre> |           | 10.5     | 4                     | Y        | Y                      | 1011              |
|                                        | :21   | S10        | 68 59.24    | 12 55.11  | 20       | 2                     | Y        | Y                      | 1213              |
|                                        |       |            |             |           | 49.8     | 3                     | Y        | /                      | 1415              |
|                                        |       |            |             |           | 51       | 2                     | Y        | /                      | /                 |
|                                        | 18.22 |            |             |           | 10       | 2                     | Y        | /                      | 2223              |
| 5.3                                    | •46   | S11        | 68 45.17    | 13 35.14  | 30       | 2                     | V        | /                      | 2021              |
|                                        |       |            |             |           | 40       | 4                     | Y        | Y                      | 1819              |
|                                        |       |            |             |           | 5        | 4                     | Y        | /                      | 3536              |
|                                        | 21.00 |            |             |           | 10       | 4                     | V        | V                      | 3334              |
|                                        | -00   | S12        | 68 51.64    | 13 17.73  | 30       | Δ T                   | V        | V                      | 2930              |
| 5.3                                    | .00   |            |             |           | 50       |                       | V        | /                      | 2730              |
|                                        |       |            |             |           | <u> </u> |                       | V        | /                      | 34                |
|                                        | 15.02 |            |             |           | 10.8     | - <del>- τ</del><br>Λ | V        | /                      | <u> </u>          |
| 5.4                                    | -30   | S13        | 69 28.49    | 13,17.20  | 21.5     | 4                     | I<br>V   | V                      | 78                |
|                                        | .50   |            |             |           | 40.8     | 4                     | I<br>V   | 1                      | 56                |
|                                        |       |            |             |           | 40.0     | 4                     |          | /                      | 30                |
|                                        | 6.02. |            |             |           | 3.0      | 2                     | I<br>V   | /                      | 54                |
|                                        | 6:02: | S14        | 68 50.97    | 14 32.58  | 10.2     | 2                     | Y        | /                      | 56                |
|                                        | 58    |            |             |           | 19.9     | 2                     | Y<br>V   | Ý                      | /8                |
| 5.5                                    |       |            |             |           | 50.2     | 5                     | Y        | /                      | 910               |
|                                        | 10.07 |            |             |           | 0.0      | 4                     | Y        | /                      | 1314              |
|                                        | 13:27 | S15        | 69 05.56    | 13 56.57  | 9.7      | 4                     | Y        | /                      | 1516              |
|                                        | :55   | -          |             |           | 20       | 4                     | Y        | /                      | 1718              |
|                                        |       |            |             |           | 30       | 4                     | Y        | Y                      | 1920              |
| 5.6                                    | 16:34 | S16        | 68 54.86    | 14 22.78  | 5        |                       | Y        | /                      | 282930            |
|                                        | :12   |            |             |           | 10       | 4                     | Y        | Y                      | 2122              |
|                                        |       |            |             |           | 41       | 4                     | Y        | /                      | 2627              |

|      |        |     |          |          | 49   | 4        | Y      | /      | 2324       |
|------|--------|-----|----------|----------|------|----------|--------|--------|------------|
|      |        |     |          |          | 4.7  | 2        | Y      | Y      | 89         |
|      | 0.05   | 017 | (0.00.(0 | 14.04.00 | 10.4 | 2        | Y      | /      | 67         |
| 5.7  | 0:05   | 817 | 69 00.62 | 14 26.02 | 20.4 | 3        | Y      | /      | 45         |
|      |        |     |          |          | 30.3 | 2        | Y      | /      | 123        |
|      |        |     |          |          | 4.6  | 2        | Y      | /      | 34         |
|      | 9:34:  |     | 60.44.00 | 10.00.40 | 11.1 | 2        | Y      | /      | 567        |
|      | 17     | 518 | 68 44.28 | 13 38.43 | 20.5 | 2        | Y      | /      | 1011       |
|      |        |     |          |          | 30.2 | 2        | Y      | /      | 89         |
|      |        |     |          |          | 5.5  | 2        | Y      | /      | 1819       |
| 5.0  | 15:48  | 010 | (0.50.(0 | 12 20 (1 | 10.5 | 2        | Y      | /      | 1617       |
| 5.8  | :13    | 519 | 68 50.62 | 13 39.61 | 29.6 | 2        | Y      | Y      | 1514       |
|      |        |     |          |          | 39.4 | 2        | Y      | /      | 1312       |
|      |        |     |          |          | 4    | 2        | Y      | /      | 2021       |
|      | 17.05  | G20 | (0.57.0) | 12 24 00 | 12.6 | 2        | Y      | /      | 2223       |
|      | 17:05  | 820 | 68 57.06 | 13 24.08 | 29.5 | 2        | Y      | Y      | 2425       |
|      |        |     |          |          | 100  | 2        | Y      | Y      | /          |
|      |        |     |          |          | 3.4  | 2        | Y      | Y      | 910        |
|      |        |     |          |          | 5.8  | /        | /      | /      | 12         |
|      | 0:43:  | S21 | (0.01.90 | 12 12 50 | 10   | 4        | Y      | /      | /          |
|      | 03     |     | 09 01.89 | 13 12.58 | 20.9 | 4        | Y      | /      | 78         |
|      |        |     |          | [        | 31.1 | /        | /      | /      | 34         |
|      |        |     |          |          | 41.1 | /        | /      | /      | 56         |
|      |        |     |          |          | 3.4  | /        | /      | /      | 1112       |
|      |        |     |          |          | 4.5  | 2        | Y      | /      | 2324       |
|      | 7.16.  |     |          | 13 37.08 | 10.7 | 2        | Y      | /      | 2122       |
|      | 1/.40. | S22 | 69 00.36 |          | 20.9 | /        | /      | /      | 1314       |
|      | 14     |     |          |          | 40.4 | 3        | Y      | /      | 1920       |
|      |        |     |          |          | 51.4 | /        | /      | /      | 1718       |
|      |        |     |          |          | 74.6 | 4        | Y      | Y      | 1516       |
|      |        |     | 68 54.87 |          | 3.6  | /        | /      | /      | 2526       |
|      |        |     |          |          | 5.8  | 2        | Y      | /      | 3738       |
| 5.9  | 11.54  | S23 |          |          | 11.5 | 2        | Y      | /      | 3536       |
|      | .51    |     |          | 14 08.00 | 19.9 | 2        | Y      | /      | 3334       |
|      |        |     |          |          | 30.6 | 3        | Y      | Y      | 3132       |
|      |        |     |          |          | 40.8 | /        | /      | /      | 2930       |
|      |        |     |          |          | 50.2 | /        | /      | /      | 2728       |
|      |        |     |          |          | 5    | 2        | Y      | /      | 4546       |
|      | 14:06  | S24 | 69 04.28 | 14 03.70 | 10.6 | /        | /      | /      | 3940       |
|      | :26    |     |          |          | 20.4 | 2        | Y      | Y      | 4344       |
|      |        |     |          |          | 30.4 | /        | /      | /      | 4142       |
|      |        |     |          |          | 5.4  | /        | /<br>V | /      | 30<br>1112 |
|      |        |     |          |          | 5.5  | 2        | Y      | /      | 1112       |
|      | 23:30  | 825 | 60 12 60 | 12 40 20 | 20.4 |          | Y /    | /      | 24         |
|      | :48    | 525 | 09 12.09 | 15 49.20 | 20.4 | 2        | /<br>V | /      | 010        |
|      |        |     |          |          | 29.9 | 2        |        | /<br>V | 910<br>79  |
|      |        |     |          |          | 59.4 | <u> </u> | I<br>V | 1      | 12         |
|      |        |     |          |          | 2.0  | /        | 1<br>/ | /      | 12         |
|      |        |     |          |          | 7    | 2        | v /    | /      | 1914       |
|      | 10.24  |     |          |          | 10.4 |          | 1      | /      | 1516       |
|      | .50    | S26 | 69 12.04 | 14 02.38 | 20.2 | 2        | V /    | / /    | 2021       |
| 5 10 |        |     |          |          | 20.2 | 2        | I<br>V | /      | 2021       |
| 0.10 |        |     |          |          | 39.5 | 2        | Y      | /      | 17         |
|      |        |     |          |          | 37   | /        | /      | /      | 2425       |
|      | 10:11  | S27 | 69 06.82 | 14 16.68 | 5.4  | 2        | Y      | , /    | 3233       |
|      | :26    |     |          |          | 10.3 | 1        | Y      | /      | 3031       |

|       |       |     |          |          | 20.3 | 2 | Y | Y | 3536     |
|-------|-------|-----|----------|----------|------|---|---|---|----------|
|       |       |     |          |          | 30.4 | 2 | Y | / | /        |
|       |       |     |          |          | 40.5 | / | / | / | 26272829 |
|       |       | 570 | (0.01.72 | 14 24.12 | 3.8  | / | / | / | 3940     |
|       |       |     |          |          | 4.9  | 2 |   |   | 4748     |
| 5 1 1 | 11:33 |     |          |          | 10.5 | / | / | / | 4142     |
| 5.11  | :56   | 520 | 09 01.72 |          | 20.8 | 2 | Y | Y | 4950     |
|       |       |     |          |          | 30.3 | / | / | / | 4344     |
|       |       |     |          |          | 40.7 | / | / | / | 4546     |

# 5.4.2. Phytoplankton distribution and phytoplankton – grazer interactions

Walker Smith and Meng Rui (SJTU)

### Aim

The objectives of the phytoplankton group were to understand the distributions of phytoplankton biomass over the continental shelf/slope system, and to analyze the physical-biological coupling in the region. We also want to understand the carbon dynamics within the phytoplankton-zooplankton interactions by estimating primary production and comparing it to crude assessments of zooplankton growth and ingestion.

# Methods

The phytoplankton group from Shanghai Jiao Tong University conducted measurements on all CTD casts (n = 28, Table 2) conducted during the cruise. The variables measured included chlorophyll *a*, particulate organic carbon (POC) and nitrogen (PON), and biogenic silica (BSi). A total of 28 stations were completed, and generally ten depths were sampled at each station for each variable. All chlorophyll samples were frozen and will be analyzed at the University of Tromso, but POC/PON and BSi samples were dried at 60°C and returned to SJTU for analysis. Sampling methodology for all three variables is well documented in the literature (e.g., JGOFS 1996; Smith et al. 2011a). Additional samples were taken to help other groups to understand the elemental fluxes of this unusual system (e.g., POC/PON samples of individual copepods, chlorophyll *a* samples to calibrate fluorescence measured by gliders and the moving vessel profiler).

A bio-optical model designed to predict phytoplankton primary production will be generated using the vertical temperature and chlorophyll distributions, known temperature-photosynthetic relationships, and the ambient incident irradiance (e.g., Behrenfeld and Falkowski 1997). As such, the primary production of the entire shelf-slope can be assessed and analyzed in conjunction not only with zooplankton distributions but physical processes occurring.

# Results

While the samples will be analyzed after the cruise, a number of patterns of phytoplankton were discerned from the fluorescence and plankton composition. For example, phytoplankton biomass as determined from fluorescence and chlorophyll was greater in waters off the continental shelf when compared to that on the continental shelf. This suggests that the canonical "spring bloom" had occurred earlier in the season (prior to the cruise) on the shelf, likely due to enhanced stratification induced by freshwater inputs from land. Second, the waters off the shelf appeared to be diatoms, whereas patches of the haptophyte *Phaeocystis* sp. were found on the shelf. Understanding the relationship of copepods and other zooplankton to phytoplankton composition will require further analysis.

# References

JGOFS, 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements, IOC SCOR Rpt. 19, Bergen, Norway.

Smith, W.O. Jr., V. Asper, S. Tozzi, X. Liu and S.E. Stammerjohn. 2011a. Surface layer variability in the Ross Sea, Antarctica as assessed by in situ fluorescence measurements. Prog. Oceanogr. 88: 28-45 (doi: 10.1016/j.pocean.2010.08.002).

Behrenfeld, M.J. and P.G. Falkowski. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42: 1-20.

# 5.5. Satellite image support from NEODAAS

### Sünnje Basedow (UiT)

Through cooperation with David McKee (University Strathclyde), the people at NEODAAS provided daily support of fully processed AVHRR-SST, MODIS and VIIRS CHLA, Kd490 and, not the least, RGB images, as well as weekly averages of VIIRS RGB, for the period 1<sup>st</sup> April to 28<sup>th</sup> May. These images were very useful in selecting lines for transects and stations, and for the cruise tracks of the Gliders. Unfortunately, cloud cover was pronounced at times. However, towards the end of the study period, clear skies were common.



Fig. 14. Example of VIIRS RGB image (left) and VIIRS chlorophyll a image (right), for 28th April.

# 5.6. Size spectrum and distribution of plankton measured by LISST

Yiwu Zhu & Congwen Shan (SJTU)

#### Aim

Plankton community structures and abundances, their spatial distributions, temporal evolutions, and their correlations to the physical fields, are of critical information for understanding the response of the ecosystem to the environment pressure. We aim to obtain those information on shelf, slope, and oceanic regions of northern Norway to analyze distributions and population changes, provide plankton linkages between microbes and fishes, and to have a deep understanding on the plankton population dynamics in various ecosystems in changing environment.

#### Methods

A Laser In-Situ Scattering and Transmissometry (LISST, Sequoia Scientific) was mounted on a ringed frame and powered by a battery pack (Brooke Ocean). The LISST uses the light diffraction theory to measure sizes and volume concentration of small particles from 1 to 250  $\mu$ m (Agrawal & Pottsmith, 2000, Karp-Boss et al. 2007). Together on the frame was a package of a Laser Optical Plankton Counter (LOPC), which measures the particle size from 100  $\mu$ m to 35 mm, and a Seabird19plus CTD. This suite of instruments was deployed at stations for vertical casts. With 1 Hz sampling frequency and 32 size classes, the LISST provides high resolution measurements of plankton concentration on vertical and size distribution. A total of 26 LISST casts have been conducted during 14 days of the STRESSOR cruise (Table 5).

All data went through primary quality check and data processing. Size classed vertical profiles and size spectrum are calculated from the LISST raw data. Primary data analysis are done to compare the

size structure, the vertical distributions and abundances between slope, shelf and oceanic regions, and temporal evolution at the same location. The LISST data are also integrated into different depth intervals to see vertical variations of bio-volume concentrations.

Table 5: Overview over LISST profiles.

|               | Time( | (local) | Latitude   | Longitude |         | Cada | LISST                            | Cast         | Bottom |
|---------------|-------|---------|------------|-----------|---------|------|----------------------------------|--------------|--------|
| Date          | start | end     | (N)        | (E)       | Station | Op   | raw File                         | Depth<br>(m) | (m)    |
| 4/28/<br>2019 | 14:28 | 15:02   | 69°28.93′  | 13°20.23′ | 1       | 400  | L1531238                         | 600          | 2762   |
| 4/28/<br>2019 | 20:46 | 21:20   | 69°05.73′  | 14°06.85′ | 2       | 403  | L1531232                         | 600          | 727    |
| 4/29/<br>2019 | 1:57  | 2:14    | 68°51.18′  | 14°37.85′ | 3       | 414  | L1771905                         | 151          | 142    |
| 4/29/<br>2019 | 7:51  | 8:14    | 68°15.41′  | 13°18.02′ | 4       | 418  | L1531340                         | 140          | 148    |
| 4/30/<br>2019 | 2:00  | 2:32    | 68°54.88′  | 12°00.64′ | 5       | 428  | L1531232                         | 600          | 2674   |
| 4/30/<br>2019 | 8:31  | 8:59    | 68°43.96′  | 12°25.52′ | 6       | 436  | L1531232                         | 600          | 738    |
| 5/2/<br>2019  | 23:13 | 23:48   | 68°34.43′  | 12°22.91′ | 9       | 450  | L1531232                         | 220          | 235    |
| 5/3/<br>2019  | 16:51 | 17:25   | 68°59.18′  | 12°59.65′ | 10      | 463  | L1531340                         | 600          | 1595   |
| 5/3/<br>2019  | 19:46 | 19:54   | 68°45.16′  | 13°35.60′ | 11      | 464  | L1531232                         | 90           | 96     |
| 5/3/<br>2019  | 23:50 | 0:18    | 68°51.29′  | 13°17.97′ | 12      | 471  | L1531234                         | 520          | 572    |
| 5/4/<br>2019  | 14:25 | 14:56   | 69°29.23′  | 13°19.57′ | 13      | 478  | L1531234                         | 600          | 2762   |
| 5/5/<br>2019  | 8:55  | 9:24    | 68°51.21′  | 14°32.18′ | 14      | 487  | L1531232                         | 177          | 188    |
| 5/5/<br>2019  | 13:05 | 13:33   | 69°6.013′  | 14°00.77′ | 15      | 498  | L1531232                         | 600          | 845    |
| 5/5/<br>2019  | 19:53 | 20:18   | 68°54.86′  | 14°22.73′ | 16      | 504  | L1531232<br>L1531252             | 255          | 265    |
| 5/7/<br>2019  | 1:06  | 1:24    | 68°59.95′  | 14°26.08′ | 17      | 513  | L1531232                         | 75           | 86     |
| 5/8/<br>2019  | 15:22 | 15:43   | 68°44.75′  | 13°37.23′ | 18      | 526  | L1531238                         | 80           | 90     |
| 5/8/<br>2019  | 17:04 | 17:27   | 68°50.35′  | 13°40.04′ | 19      | 528  | Li531234                         | 90           | 102    |
| 5/8/<br>2019  | 22:14 | 22:51   | 68°56.90′  | 13°23.93′ | 20      | 532  | Li531232                         | 600          | 785    |
| 5/9/<br>2019  | 1:31  |         | 69°01.82′  | 13°12.09′ | 21      | 538  | L1531234                         | 600          | 2260   |
| 5/9/<br>2019  | 10:36 |         | 69°00.31′  | 13°37.29′ | 22      | 545  | L1531232                         | 550          | 603    |
| 5/9/<br>2019  | 12:50 | 13:13   | 69°54.64′  | 14°06.75′ | 23      | 547  | L1531232<br>L1531234<br>L1531244 | 150          | 157    |
| 5/9/<br>2019  | 16:28 | 13:13   | 69°04.434′ | 14°03.73′ | 24      | 547  | L1531232<br>L1531234<br>L1531244 | 452          | 465    |
| 5/9/<br>2019  | 23:40 | 0:11    | 69°11.57′  | 13°50.72′ | 25      | 561  | L1531232                         | 600          | 1673   |

GMT=Local - 2

| 5/10/ | 4:01  | 4:33  | 69°12.04′ | 14°01.70′ | 26 | 569 | L1531232  | 600 | 1500 |
|-------|-------|-------|-----------|-----------|----|-----|-----------|-----|------|
| 2019  |       |       |           |           |    |     |           |     |      |
| 5/10/ | 10:42 | 11:10 | 69°06.10′ | 14°14.86′ | 27 | 574 | L1531340  | 600 | 640  |
| 2019  |       |       |           |           |    |     |           |     |      |
| 5/10/ | 14:22 | 14:45 | 69°22.44′ | 14°24.71′ | 28 | 582 | L15313235 | 600 | 640  |
| 2019  |       |       |           |           |    |     |           |     |      |

**Preliminary results** 



*Fig. 15. Station 1, 2, and 3 represent oceanic, slope and shelf regions respectively.* The vertical structure of particle size distribution showed that smaller particles had higher volume

concentration in oceanic region than on the shelf.

3D biomass spectrum from station 1, 2 and 3 also revealed variations of volume concentration on different sizes and depths for different regions.



The LISST data will be further analyzed with LOPC data and CTD data to study population dynamics over a larger range of the plankton community and to look at physical-biological coupled processes.

Fig. 16. 3D visualisation of LISST data from station 1.

# 5.7. Physical-biological measurements by MVP

Sünnje Basedow (UiT) & Zhaoru Zhang (SJTU)

### Aim & Method

The aim of the project is to analyse biophysical interactions, to enable this we deployed a moving vessel profiler (MVP) equipped with a CTD (Micro CTD, Applied Microsystems Ltd.), fluorescence sensor (WET Labs FLRT Chl a fluorometer) and laser optical plankton counter (LOPC; ODIM-Brooke Ocean Rolls Royce Canada Ltd., Herman et al. 2004) to collect physical and biological data with the same, high spatio-temporal resolution. The instruments collected data with 2 Hz (LOPC) or higher frequencies, and were towed along 17 transects (Table 6). All data are stored, have been pre-processed and will be processed at UiT, in cooperation with SJTU. The fluorescence sensor will be calibrated against filtered chlorophyll, for which samples were collected by the phytoplankton group (SJTU) when the sensor was at the surface (see section 5.4.2).

| Transect | Start    | Start | Start Lat | Start   | End Date | End   | End Lat | End Lon |
|----------|----------|-------|-----------|---------|----------|-------|---------|---------|
| ID       | Date     | Time  |           | Lon     |          | Time  |         |         |
| T1       | 27/04/19 | 21:59 | 68.85 N   | 14.63 E | 28/04/19 | 05:55 | 69.47 N | 13.34 E |
| T2       | 29/04/19 | 12:56 | 68.26 N   | 13.32 E | 29/04/19 | 21:15 | 68.92 N | 12.00 E |
| T3       | 30/04/19 | 18:32 | 67.75 N   | 11.00 E | 01/05/19 | 05:02 | 68.36 N | 9.49 E  |
| T4       | 01/05/19 | 06:04 | 68.40 N   | 9.64 E  | 01/05/19 | 14:51 | 67.85 N | 11.03 E |
| T5       | 01/05/19 | 15:43 | 67.90 N   | 11.15 E | 02/05/19 | 0:09  | 68.58 N | 9.94 E  |
| T6       | 02/05/19 | 01:26 | 68.42 N   | 10.12 E | 02/05/19 | 10:37 | 67.95 N | 11.30 E |
| T7       | 02/05/19 | 22:43 | 68.56 N   | 14.33 E | 03/05/19 | 08:30 | 68.99 N | 12.90 E |
| T8       | 04/05/19 | 16:07 | 69.49 N   | 13.24 E | 05/05/19 | 05:10 | 68.85 N | 14.52 E |
| T9       | 07/05/19 | 00:46 | 69.00 N   | 14.42 E | 07/05/19 | 04:55 | 69.26 N | 13.92 E |
| T10      | 07/05/19 | 06:01 | 69.24 N   | 13.73 E | 07/05/19 | 10:49 | 68.95 N | 14.27 E |
| T11      | 07/05/19 | 11:52 | 68.90 N   | 14.11 E | 07/05/19 | 16:34 | 69.18 N | 13.50 E |
| T12      | 07/05/19 | 17:52 | 69.13 N   | 13.33 E | 07/05/19 | 23:12 | 68.85 N | 13.93 E |
| T13      | 08/05/19 | 01:19 | 68.79 N   | 13.77 E | 08/05/19 | 05:05 | 69.05 N | 13.06 E |
| T14      | 08/05/19 | 06:22 | 68.99 N   | 12.90 E | 08/05/19 | 11:32 | 68.74 N | 13.64 E |
| T15      | 10/05/19 | 14:26 | 68.87 N   | 14.50 E | 10/05/19 | 23:25 | 69.48 N | 13.24 E |
| T16      | 10/05/19 | 23:39 | 69.48 N   | 13.24 E | 11/05/19 | 08:53 | 68.87 N | 14.50 E |
| T17      | 11/05/19 | 09:42 | 68.91 N   | 14.65 E | 11/05/19 | 15:53 | 69.32 N | 13.80 E |

 Table 6. Deployments of the MVP

# Preliminary results

The common trend along all transects was the extension of relatively low saline coastal water in the upper layer, that stretched far offshore (Fig. 17, 18). Below, Atlantic Water dominated. The distribution of both chlorophyll a (from the fluorescence sensor) and zooplankton (from the laser optical plankton counter, particles with characteristics of *Calanus* CIV and older are shown below (Fig. 19), processed as in Basedow et al. 2013) was centered in the upper 100 m, but with large differences in concentrations/abundances along the transects. Fluorescence is not shown here, because the concentrations are off and meaningless before calibration against filtered chlorophyll.

# References

Basedow, S.L., Tande, K.S., Norrbin, M.F., Kristiansen, S. (2013) Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a *Calanus finmarchicus* dominated summer situation. *Prog. Oceanogr.* 108, 72-80.

Herman, A.W., Beanlands, B., Phillips, E.F. (2004) The next generation of Optical Plankton Counter: the Laser-OPC. *J. Plankton Res.* 26, 1135-1145.



Fig. 17. Temperature along transect 13 with the warmest water at the shelf edge.



*Fig. 18. Salinity along transect 13. Relatively fresh water in the upper tens of metres, and water with salinity characteristics of Atlantic water below.* 



Fig. 19. Patches of older stages of C. finmarchicus. Few below 100 m, various abundances above.

# 5.7. Zooplankton

# 5.7.1. Multinet

# Nicholas Weidberg (UiT)

A total of 123 samples, all preserved in 4% formaline buffered with hexamine, were taken all over the study area (Table 7). At stations 7, 8 and 19 no net could be deployed due to bad weather or because these were only CTD stations. At stations 12 and 18 the WP2 replaced the Multinet due to bad weather. 5 depths were always taken with the Multinet down to 600 when possible, usually off the shelf, while the on the shelf the deepest simple was taken 20-50 m above the bottom. With the WP2 three depths were sampled down to 100. Samples were taken back to UiT and will be analysed at IOPAS in Poland by Kasia Dmoch.

19 29-04-19 St St 3 19-04-14 St 3 29-04-19 -04 14 30-10-

Fig. 20. Example of Station 3.

| Station | Day        | Depths            | Remarks                                        |
|---------|------------|-------------------|------------------------------------------------|
| 1       | 28-04-2019 | 0-5-10-30-100-600 |                                                |
| 2       | 28-04-2019 | 0-5-10-30-100-600 |                                                |
| 3       | 29-04-2019 | 0-5-10-30-50-100  |                                                |
| 4       | 29-04-2019 | 0-5-10-30-50-100  | 3 depths not to be trusted: codends 3, 4 and 5 |
|         |            |                   | broken and opened and had to be replaced       |
| 5       | 30-04-2019 | 0-5-10-30-100-600 |                                                |
| 6       | 30-04-2019 | 0-5-10-30-100-600 |                                                |
| 9       | 02-05-2019 | 0-5-10-30-100-180 |                                                |
| 10      | 03-05-2019 | 0-5-10-30-100-600 |                                                |
| 11      | 03-05-2019 | 0-5-10-30-50-65   |                                                |
| 12      | 04-05-2019 | 0-10-30-100       | WP2 used due to bad weather                    |
| 13      | 04-05-2019 | 0-5-10-30-100-600 |                                                |
| 14      | 05-05-2019 | 0-5-10-30-100-145 |                                                |
| 15      | 05-05-2019 | 0-5-10-30-100-600 |                                                |

| 16 | 05-05-2019 | 0-5-10-30-100-220 |                                                                                                                     |
|----|------------|-------------------|---------------------------------------------------------------------------------------------------------------------|
| 17 | 07-05-2019 | 0-5-10-30-40-50   | Codend for first depth (0-5) opened when the<br>net was out of the water, according to crew, it<br>might be trusted |
| 18 | 08-05-2019 | 0-10-30-70        | WP2 used instead due to bad weather                                                                                 |
| 20 | 09-05-2019 | 0-5-10-30-100-490 |                                                                                                                     |
| 21 | 09-05-2019 | 0-5-10-30-100-600 |                                                                                                                     |
| 22 | 09-05-2019 | 0-5-10-30-100-490 |                                                                                                                     |
| 23 | 09-05-2019 | 0-5-10-30-50-100  |                                                                                                                     |
| 24 | 09-05-2019 | 0-5-10-30-100-480 |                                                                                                                     |
| 25 | 10-05-2019 | 0-5-10-30-100-600 |                                                                                                                     |
| 26 | 10-05-2019 | 0-5-10-30-100-600 |                                                                                                                     |
| 27 | 10-05-2019 | 0-5-10-30-100-490 |                                                                                                                     |
| 28 | 10-05-2019 | 0-5-10-30-40-50   | One codend broke due to impact with the boat<br>before getting into the water, it was replaced<br>before deployment |

# 5.7.2. CHASE project - Chronobiology in Arctic Sea Ecosystems

Kim Last & Jordan Grigor (SAMS)

#### Aim

Experiments were carried out to investigate the response of copepods to photoperiod and to determine changes in respiration rate and gene expression with season. Experiments were also carried out to investigate buoyancy control in copepods found in surface swarms.

#### Swimming behavior

We conducted on-board activity experiments on the swimming behavior of copepods in relation to species stage and day-length (photoperiod). All measurements were made on individual copepods using Trikinetics Locomotor Activity Monitors (LAMS). Activity measurements using the LAMS yield activity as a proxy for swimming, quantified as the number of beam breaks across the experimental chamber per specified unit of time. Activity screens were carried out with various ontogenetic stages of the copepod *Calanus finmarchicus*. All experimental runs and their conditions are annotated in Table 8.

| Table 8: Sur  | mmary of  | swimmi   | ng behavio  | ur exp  | periments | s (note | all | animals | collectea | l with | 200 | um | WP2 |
|---------------|-----------|----------|-------------|---------|-----------|---------|-----|---------|-----------|--------|-----|----|-----|
| net). Total a | nimals sc | reened b | ehaviorally | ): 626. |           |         |     |         |           |        |     |    |     |

| Station | Depth (m)  | Experiment and<br>photo.<br>treatment               | Z  | Species                 | Salinity (psu) | Temp (tinytag) | LAMS | UTC + 1hStart    | UTC + 1hEnd     | Notes                                      |
|---------|------------|-----------------------------------------------------|----|-------------------------|----------------|----------------|------|------------------|-----------------|--------------------------------------------|
| S1      | 100-<br>40 | LL<br>Water 602m                                    | 32 | C. fin<br>CV, AM,<br>AF | Check ctd      | 6.5            | 1    | 28/4/19<br>17:42 | 1/6/19<br>08:10 | Images taken                               |
| S1      | 100-<br>40 | LD 18:6<br>(on: 03:00,<br>off: 21:0)<br>Water 602 m | 64 | C. fìn<br>CV, AM,<br>AF | Check ctd      | 6.5            | 2+4  | 28/4/19<br>17:42 | 1/6/19<br>08:10 | Lights on but v dim until 07:40<br>29/4/19 |
| S1      | 100-<br>40 | LD 12:12<br>(on: 06:00,<br>off: 18:00)              | 32 | C. fin<br>CV, AM,<br>AF | Check ctd      | 6.5            | 3    | 28/4/19<br>17:42 | 1/6/19<br>08:10 | Images taken                               |
| S1      | 100-<br>40 | LD 6:18<br>(on: 09:00,<br>off: 15:00)<br>Water 602m | 32 | C. fin<br>CV, AM,<br>AF | Check ctd      | 6.5            | 5    | 28/4/19<br>17:42 | 1/6/19<br>08:10 | Images taken                               |

| S1      | 100-<br>40             | DD<br>Water 602m                                     | 32            | C. fin<br>CV, AM,<br>AF  | Check etd                                       | 6.5 | 9                                            | 28/4/19<br>17:42 | 1/6/19<br>08:10                           | Images taken                                                                                                                       |
|---------|------------------------|------------------------------------------------------|---------------|--------------------------|-------------------------------------------------|-----|----------------------------------------------|------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| S2      | 100-<br>40             | Stacked LAM<br>DD<br>Water 50-0                      | 31            | C. fin<br>CV, AM,<br>AF  | Check ctd                                       | 6.5 | 6 (top)<br>7 (bot.)                          | 28/4/19<br>23:37 | 30/4/19<br>15:00                          | Images taken                                                                                                                       |
| S6      | 150-<br>50 m           | Stacked LAM<br>DD<br>Water 100-0<br>Stat. 3/4        | 31            | C. fin<br>CV, AM,<br>AF  | Check ctd                                       | 6.5 | 6 (top)<br>7 (bot.)                          | 30/4/19<br>20:47 | 2/5/19<br>20:10                           | Images taken                                                                                                                       |
| S9      | 40-<br>20              | LL<br>Water from<br>S9 3m +<br>bottom                | 32            | <i>C.f.</i> CIII,<br>CIV | 33 (1-16)<br>35 (17-32)<br>1-8 CIII<br>9-16 CIV |     | 1+3                                          | 3/5/19<br>11:30  | 5/5/19<br>~17:00                          | Swarm<br>Camera broken – animals<br>discarded                                                                                      |
| S9      | <mark>40-</mark><br>20 | LD 18:6<br>Water from<br>S9 3m +<br>bottom           | 32            | <i>C.f.</i> CIII,<br>CIV | 33 (1-16)<br>35 (17-32)<br>1-8 CIII<br>9-16 CIV |     | 2+4                                          | 3/5/19<br>11:30  | 5/5/19<br>~17:00                          | Swarm<br>Camera broken – animals<br>discarded                                                                                      |
| S9      | <mark>40-</mark><br>20 | DD<br>Water from<br>S9 3m +<br>bottom                | 32            | <i>C.f.</i> CIII,<br>CIV | 33 (1-16)<br>35 (17-32)<br>1-8 CIII<br>9-16 CIV |     | 5+9                                          | 3/5/19<br>11:30  | 5/5/19<br>~17:00                          | Swarm<br>Camera broken – animals<br>discarded                                                                                      |
| S9      | 40-<br>20 m            | Stacked<br>LAM DD<br>Water from<br>S9 200m and<br>3m | 31<br>+<br>11 | <i>C.f.</i> CIII,<br>CIV | 33 (1-16)<br>35 (17-32)<br>1-8 CIII<br>9-16 CIV |     | 6 (top)<br>7 (bot)<br>8 (top)<br>10<br>(bot) | 3/5/19<br>01:00  | 5/5/19<br>~18:00                          | Swarm.<br>Data just noise from poor<br>weather<br>Animals not photo and<br>discarded                                               |
| S1<br>6 | 5-0<br>m               | Stacked LAM                                          | 31<br>+<br>11 | <i>C.f.</i> CV           | 33 (1-16)<br>35 (17-32)                         | 6.5 | 6 (top)<br>7 (bot)<br>8 (top)<br>10<br>(bot) | 6/5/19<br>00:30  | 6/5/19<br>After 22:30<br>data<br>unusable | Set up right after collection and<br>take advantage of being in<br>port/shelter for 24 hours<br>Animals not photo and<br>discarded |
| S1<br>6 | 5-0<br>m               | LL<br>Water 7m                                       | 32            | C. fin CV                | 33                                              | 6.5 | 1+2                                          | 7/5/19<br>23:07  | 11/9/19<br>11:30                          | Buoyancy test on all animals prior to exp.                                                                                         |
| 6       | 5-0<br>m               | LD 18:6<br>(on: 03:00,<br>off: 21:0)<br>Water 7m     | 64            | C. fin CV                | 33                                              | 6.5 | 4+10                                         | 7/5/19<br>23:07  | 11/9/19<br>11:30                          | Buoyancy test on all animals prior to exp.                                                                                         |
| S1<br>6 | 5-0<br>m               | LD 12:12<br>(on: 06:00,<br>off: 18:00)<br>Water 7m   | 32            | C. fin CV                | 33                                              | 6.5 | 5+6                                          | 7/5/19<br>23:07  | 0                                         | Buoyancy test on all animals prior to exp.                                                                                         |
| S1<br>6 | 5-0<br>m               | LD 6:18<br>(on: 09:00,<br>off: 15:00)<br>Water 7m    | 32            | C. fin CV                | 33                                              | 6.5 | 7+8                                          | 7/5/19<br>23:07  | 11/9/19<br>11:30                          | Buoyancy test on all animals prior to exp.                                                                                         |
| S1<br>6 | 5-0<br>m               | DD<br>Water 7m                                       | 32            | C. fin CV                | 33                                              | 6.5 | 3+9                                          | 7/5/19<br>23:07  | 11/9/19<br>11:30                          | Buoyancy test on all animals prior to exp.                                                                                         |

Preliminary analysis of animals collected from station S1 reveal marked differences in swimming activity between *C. finmarchicus* adult females and CV and in response to light treatment.

#### Lipid and genetic samples

Animals were also frozen for lipid analysis in order to understand the principle food source for these animals, summarized in Table 9.

#### **Buoyancy experiments**

Further experiments were carried out focusing on the dominant stages at this time of year (CIII, CIV and CV) especially in relation to the occurrence of copepod 'super swarms' in order to determine if loss of buoyancy control is a contributing factor in the occurrence of these animals at the sea surface. Copepods were anaesthetized and allowed to sink in a column tank (length: 500 mm, diameter: 50 mm) as shown in Figure 21.

| Stressor<br>cruise<br>station | Lat/Long               | Depth<br>(m) | Stage                    | Sample No           | Vial location | Notes |
|-------------------------------|------------------------|--------------|--------------------------|---------------------|---------------|-------|
| Station<br>S2                 |                        | 100 - 40     | <i>C f</i> adult females | 3x 10 ind $3$ yials | A1-A3         |       |
| <u>S4</u>                     |                        | 100 - 40     | C f CV                   | 3x 10 ind $3$ vials | A4-A6         |       |
| <u>S6</u>                     |                        | 150 - 50     | C f CV                   | 3x 10 ind $3$ vials | A7-A9         |       |
| <u>\$9</u>                    |                        | 10 - 0       | C. f. CIII               | 3x 30 ind. 3 vials  | B1-B3         | Swarm |
| <u>S9</u>                     |                        | 10 - 0       | C. f. CIV                | 3x 30 ind. 3 vials  | B4-B6         | Swarm |
| <u>S9</u>                     |                        | 10 - 0       | <i>C. f.</i> CV          | 3x 10 ind. 3 vials  | B7-B9         | Swarm |
| S9                            |                        | 10 - 0       | Community<br>sample      | 1                   | 1             | Swarm |
| S10                           | 68 59.34N<br>12 54.52E | 50 - 5       | C. f. CIII               | 3x 10 ind. 3 vials  | C1-C3         |       |
| S10                           | 68 59.34N<br>12 54.52E | 50 - 5       | <i>C. f.</i> CIV         | 3x 10 ind. 3 vials  | C4-C6         |       |
| S11                           |                        | 10 - 0       | <i>C. f.</i> CV          | 3x 10 ind. 3 vials  | C7-C9         |       |
| S11                           |                        | 10 - 0       | Community sample         | 2                   | 2             |       |
| S14                           |                        | 40 - 20      | <i>C. f.</i> CV          | 3x 10 ind. 3 vials  | D1-D3         |       |
| S14                           |                        | 40 - 20      | Community sample         | 3                   | 3             |       |
| S16                           |                        | 5 - 0        | <i>C. f.</i> CV          | 3x 10 ind. 3 vials  | D4-D6         | Swarm |
| S16                           |                        | 5 - 0        | Community sample         | 4                   | 4             | Swarm |
| S17                           |                        | 20 - 0       | <i>C.f.</i> CV           | 3x 10 ind. 3 vials  | D7-D9         | Swarm |
| S17                           |                        | 20-0         | C.f. CIV                 | 3x 12 ind. 3 vials  | E1-E3         | Swarm |
| S17                           |                        | 20 - 0       | Community sample         | 5                   | 5             | Swarm |
| S25                           |                        | 250 - 150    | <i>C.f.</i> CV           | 3x 10 ind. 3 vials  | E4-E6         |       |
| S25                           |                        | 250 - 150    | Community sample         | 6                   | 6             |       |
| S27                           | 69 06.37N<br>14 15.43E | 50-0         | <i>C.f.</i> CV           | 3x 10 ind. 3 vials  | Е7-Е9         |       |
| S27                           | 69 06.37N<br>14 15.43E | 150 - 50     | <i>C.f.</i> CV           | 3x 10 ind. 3 vials  | F1-F3         |       |
| S27                           | 69 06.37N<br>14 15.43E | 50-0         | Community sample         | 7                   | 7             | Swarm |
| S27                           | 69 06.37N<br>14 15.43E | 150 - 50     | Community sample         | 8                   | 8             | Swarm |

*Table 9: Animals collected for lipid analysis (note all animals collected with 200 µm WP2 net). Individuals picked: 226* 

Table 10: summary of samples collected for seasonal gene expression analysis

| Stressor | Lat/Long  | Depth  | Time (UTC) |
|----------|-----------|--------|------------|
| cruise   |           | (m)    |            |
| station  |           |        |            |
| S10      | 68 59.34N | 50-0   | 12:00      |
|          | 12 54.52E |        |            |
| S10      | 68 59.34N | 150-50 | 12:09      |
|          | 12 54.52E |        |            |
| S15      | 69 05.25N | 150-50 | 10:17      |
|          | 14.01.74E |        |            |
| S15      | 69 05.25N | 50-0   | 10:36      |
|          | 14.01.74E |        |            |
| S27      | 69 06.37N | 150-50 | 09:11      |
|          | 14 15.43E |        |            |
| S27      | 69 06.37N | 50-0   | 0939       |
|          | 14 15.43E |        |            |

Preliminary results reveal that all stages are negatively buoyant at the range of salinity and temperature found in their habitat and a working hypothesis is that behavior, not hydrography, result in the animals swarming near the ocean surface. Sinking rate was higher at the lower salinity, especially in stages CIV and CV. This difference between stages was not apparent at the higher salinity, with overall sinking decreased especially at the CIV and CV stages compared to the lower salinity treatment. The effect of temperature on buoyancy was not apparent.

#### Gene expression

Community samples were also collected for seasonal gene expression analysis where cruise plan allowed for a near midday net stratified between deep (150 - 50 m) and shallow (50-0 m) as summarized in Table 10.



*Fig. 21: Sinking rate of anaesthetized copepod stages (CIII, CIV and CV) at two salinities (30 ppt and 35 ppt) and two temperatures (4.3C and 6.9C).* 

#### Respiration

We conducted oxygen consumption experiments to provide a physiological correlate to rhythmic activity measurements made on copepods from the same field collections. All measurements were made on individual copepods using a 24-well Loligo microplate respirometry system. Experimental runs are annotated in Table 11. Temperature was 6.5 °C and salinity treatments varied between 34-35 psu, barometric pressure at the start of each run is noted. After each run, species and stage of individual copepods was confirmed, each was photographed for later measurement of prosome length and area (to be converted to dry weight) and lipid sac volume (where applicable). Failure of camera system on the Oxygen consumption data will be processed to calculate respiration rates and critical partial pressures (Pcrit). These values will be compared among stations, species, stage, sex, energetic status as measured by lipid reserves, and time of day to test whether respiration rates reflect periods of increased activity observed in the LAM experiments.

*Table 11: Summary of respiration experiments (note all animals collected with 200 um WP2 net). Total animals respiration: 180* 

| Species         | Depth  | (event No)Station | un Start (UTC +1)   | Run stop (UTC+2) | (µI)Well size | Pressure (hPa) | Temp / Sal | Control | File name                        |
|-----------------|--------|-------------------|---------------------|------------------|---------------|----------------|------------|---------|----------------------------------|
| C.f. CV.        | 100 -  | S1                | <b>≃</b><br>29/4/19 | 30/4/19          | 500           | 1025           | 7/34       | A1-     | File: AF CV 29042019 1639 S1     |
| AF, AM          | 40     |                   | 16:41               | 07:53            |               |                |            | D1      | Image: yes                       |
| <i>C.f.</i> CV, | 50 - 0 | S6                | 30/4/19             | 30/4/19          | 500           | 1018           | 7 / 35     | A1-     | File: AF_AM_CV_30042019_1409_S6  |
| AF, AM          |        |                   | 14:10               | 20:00            |               |                |            | D1      | Image: yes                       |
| <i>C.f.</i> CV, | 150 -  | S6                | 30/4/19             | 1/5/19           | 500           | 1013           | 6.5 / 34   | A1-     | File: AF_AM_CV_30042019_2228_S6  |
| AF, AM          | 50     |                   | 22:28               | 07:37            |               |                |            | D1      | Image: yes                       |
| <i>C. f.</i>    | 10 - 0 | S9                | 3/5/19              | 3/5/19           | 500           | 1004           | 6.3 /      | A1-     | CIII: A2_A6, C2_C6 (33, 35 psu)  |
| CIII +          |        |                   | 00:40               | 13:55            |               |                | 33_35      | D1      | CIV: B2_B6, D2_D6 (33, 35 psu)   |
| CIV             |        |                   |                     |                  |               |                |            |         | File: C3_C4_03052019_0037_S9     |
|                 |        |                   |                     |                  |               |                |            |         | Image: no, but measured          |
| <i>C. f.</i>    | 10 - 0 | S9                | 3/5/19              | 4/19             | 500           | 1001           | 6 /        | A1-     | CIII: A2_A6, C2_C6 (33, 35 psu)  |
| CIII +          |        |                   | 17:52               | 08:47            |               |                | 33_35      | D1      | CIV: B2_B6, D2_D6 (33, 35 psu)   |
| CIV             |        |                   |                     |                  |               |                |            |         | File: C3_C4_03052019_S9_1750     |
|                 |        |                   |                     |                  |               |                |            |         | Image: no, but measured          |
| C. f.           | 10 - 0 | S11               | 4/5/19              | 5/5/19           | 500           | 999            | 6 /        | A1-     | CIII: A2_A6, C2_C6 (33, 35 psu)  |
| CIII +          |        |                   | 11:01               | 08:13            |               |                | 33_35      | D1      | CIV: B2_B6, D2_D6 (33, 35 psu)   |
| CIV             |        |                   |                     |                  |               |                |            |         | File: C3_C4_05052019_1100_S11    |
|                 |        |                   |                     |                  |               |                |            |         | Image: no, but measured          |
| <i>C.f.</i> CV  | 5-0    | S16               | 6/5/19              | 7/5/19           | 500           | 1012           | 6.3 /      | A1-     | CV: A2_A6, C2_C6 (33, 35 psu)    |
|                 |        |                   | 23:50               | 08:32            |               |                | 33_35      | D1      | CV: B2_B6, D2_D6 (33, 35 psu)    |
|                 |        |                   |                     |                  |               |                |            |         | File: CV_06052019_2350_\$16      |
| ~ . ~ ~ .       |        | ~                 | - / - / / 0         |                  |               | 1000           |            |         | Image: no, but measured          |
| C.f. CV         | 5-0    | S16               | 7/5/19              | 8/5/19           | 500           | 10??           | 6.3 /      | Al-     | CV: A2_A6, C2_C6 (33, 35 psu)    |
|                 |        |                   | 23:29               | 10:44            |               |                | 33_35      | DI      | CV: B2_B6, D2_D6 (33, 35 psu)    |
|                 |        |                   |                     |                  |               |                |            |         | File: CV_0/052019_2330_\$16      |
| C C OT L        | 10     | 010               | 0/5/10              | 0/0/10           | 500           | 1000           | 22         | A 1     | Image: no, but measured          |
| C.J. CIV        | 40 -   | 818               | 8/5/19              | 9/8/19           | 500           | 10??           | 33         | Al-     | CIV: A2_A6, B2_B6, C2_C6, D2_D6. |
|                 | 20     |                   | 22:30               | 08:30            |               |                |            |         | File: CV_0/052019_2330_816       |
|                 |        |                   |                     |                  |               |                |            |         | Image: no, but measured          |

# 5.7.3. Zooplankton and phytoplankton pigments

Mathilde Servan (Nord)

#### Aim

The copepod *Calanus* contains varying amounts of pigmentation. The pigment, astaxanthin, is synthesized by the copepods from precursors from their algal diet. The differences in pigmentation could therefore be thought of as originating from different diets. Remote sensing of *Calanus* surface swarms is possible because of the copepods red coloration. The aim is to compare the phytoplankton community and *Calanus* pigmentation in the surface layers, to better understand pigment dynamics.

#### Method

#### Secchi depth and Forel Ule scale

The secchi depth was measured at each station with daylight, unless waves were too high to determine accurate depth. A Forel Ule scale was used to determine ocean color. The secchi depth was noted down as the depth were the disk disappeared. It was then raised to half this depth, and the color on the disk was matched to the color on the scale (Table 12).

#### **Phytoplankton pigments**

Water from 5 and 30 m were filtrated through 25 mm GF/F filters. Volume ranged from 0.15 to 1.7 L depending on amount of particles in the water. Filters were folded, placed in aluminum foil, and placed in zip lock plastic bags. They were frozen immediately at -80°C.

| Station       | Secchi depth (m) | Forel-Ule | Time  |
|---------------|------------------|-----------|-------|
| 1             | 5                | 13        | 11:18 |
| 2             | 6                | 7         | 19:17 |
| 4             | 9                | 6         | 07:17 |
| 6             | 10               | 13        | 08:23 |
| 9             | 10               | 7         | 22:05 |
| 13            | 12               | 7         | 16:57 |
| 14            | 20               | 6         | 09:30 |
| 15            | 20               | 6         | 13:00 |
| 16            | 21               | 7         | 20:11 |
| 18            | 10               | 7         | 13:45 |
| 19            | 10               | 7         | 16:58 |
| 23            | 13               | 7         | 13:17 |
| 24            | 10               | 9         | 17:00 |
| 28            | 12               | 7         | 13:11 |
| Ausnesfjorden | 12               | 7         | 11:45 |

Table 12. Deployment and results of the Secchi disk and Forel-Ule scale.

Table 13. Overview over samples taken for pigment analyses.

| Station | Time  | WP2                           | WP2           | Filtration | Filtration | Experiment                          |
|---------|-------|-------------------------------|---------------|------------|------------|-------------------------------------|
|         |       | 10-0 m                        | 40-20 m       | 5 m (L)    | 30 m (L)   |                                     |
| 1       | 09:36 | 0                             | 0             | 1          | 1,4        |                                     |
| 2       | 19:25 | 0                             | 0             | 0.68       | 0.78       |                                     |
| 3       | 23:21 | 3x30 CIV                      | 3x30 CIV      | 1          | 0.8        |                                     |
| 4       | 06:23 | 0                             | 0             | 1          | 0.8        |                                     |
| 5       | 00:40 | 3x30 AF                       | NA            | 0.15       | 0.57       |                                     |
| 6       | 06:02 | 0                             | 30 + 22<br>AF | 0.3        | 0.6        |                                     |
| 9       | 20:30 | 3x30 CV                       | 3x30 CV       | 1.6        | 1.6        | 20 CV from 10-0m.<br>12h light/dark |
| 10      | 11:08 | 0                             | 0             | 0          | 0          |                                     |
| 11      | 19:02 | 2x30 CV. 3x30<br>CIV. 60 CIIV | 3x30 CV       | 1.35       | 0.8        | 20 CV from 10-0m.<br>12h light/dark |
| 13      | 15:23 | 3x30 CIV                      | NA            | 0.6        | 0.6        |                                     |
| 14      | 07:30 | 3x30 CV                       | 3x30 CIV      | 1.7        | 1.4        | 20 CV from 10-0m.<br>12h light/dark |
| 15      | 18:19 | 3x30 CIV                      | 26 CIV        | 1          | 0.6        |                                     |
| 16      | 09:46 | 3x30 CV                       | 3x30 CV       | NA         | NA         | 20 CV from 10-0m.<br>24h dark       |
| 17      | 23:24 | 3x30 CV                       | 3x30 CV       | 1.8        | 1.6        | 20 CV from 10-0m.<br>24h dark       |
| 18      | 11:44 | 3x30 CV                       | 3x30 CV       | 1          | 1          | 20 CV from 10-0m.<br>24h light      |
| 19      | 12:34 | 0                             | 0             | 0          | 0          |                                     |

| 20 | 20:46 | 3x30 CIV        | 3x30 CIV          | 2.2  | 1.4  |                                |
|----|-------|-----------------|-------------------|------|------|--------------------------------|
| 21 | 23:06 | NA              | 30 AF             | 0.75 | 0.75 |                                |
| 23 | 11:20 | 30 CV. 2x30 CIV | 3x30 CV           | 1    | 1    | 20 CV from 10-0m.<br>24h light |
| 24 | 15:04 | 3x30 CV         | 3x30 CV           | 0.8  | 1    | 20 CV from 10-0m.<br>24h light |
| 25 | 22:11 | 30 CV           | 30 AF.<br>2x30 CV | 1.2  | 0.8  |                                |
| 28 | 11:12 | 3x30 CIV        | 3x30 CV           | 1.6  | 1.4  | 20 CV from 40-20m.<br>24h dark |

# **Zooplankton pigments**

Copepods were collected from 40-20 m and 10-0 m with the WP2. 3 replicates of 30 *Calanus* CV were collected from each depth. If CV were not present in desired quantity, the most abundant stage was collected. This was either CIV or AF. At some stations, CV were only present in 40-20 m while younger stages were found in 10-0 m. The copepods were placed in aluminum foil, dried with a paper tissue to remove excess water, and stored in zip lock plastic bags. They were frozen immediately at -80°C and will be kept frozen until pigment extraction.

#### **Pigment degradation experiment**

At 9 different stations 20 *Calanus* CV were put in individual containers with 100 ml of filtered seawater. They were put in a cold room (4°C) with controlled light conditions. Three replicates with 12h light/darkness, three replicates with 24h darkness and three replicates with 24 h light. After 24 h of starvation they were collected and frozen in the same manner as above. Pigment amount will be compared to controls of the same stage collected form the same depth.

Zooplankton and phytoplankton pigments will be analyzed by Mathilde using HPLC at the university in Bodø. One sample was taken for genetics at station 27 and will also be analyzed at Nord university.



Fig. 22. Difference between off-shelf (left) and on-shelf (right) stations.

# **Observations**

Huge surface swarms were observed at on-shelf stations. The off-shelf plankton community was dominated by *Phaeocystis*, and few copepods were found in the upper layers. On-shelf copepods appeared to contain more lipids and pigment than the copepods offshore. Did not observe the same

degree of redness as some of the stations in June 2018, which could indicate that the copepods accumulate astaxanthin throughout the season. Pigment appeared to disappear slightly after starvation, especially in the antennules (Figure 22).

### 5.7.4. Echo strength and biomass measurements from ADCP

Zhiqiang Su (SJTU)

#### Aim

In order to research the abundance, distribution and biomass of krill with different spatial scales, the echo return signal of ADCP data is used to calculate the volume backscattering strength and biomass of krill.

#### Materials and methods

The previously calibrated 75KHz ADCP hull-mounted on R/V Helmer recorded acoustic data continuously from April 27 to May 12 (see section 5.2.1). Data were processed along the transects that were sampled by the moving vessel profiler. In order to validate the acoustic data, pelagic trawls were taken at selected stations along the acoustic transects. Further processing of both net samples and acoustic data will enable the estimation of the composition, abundance and biomass of the krill patches together with the total relative biomass and abundance of the targeted species in the studied area. Unfortunately, the data from sea surface to 30 m can't be recorded due to the mounting of ADCP. In addition, the CTD stations taken along the cruise track will enable the calculation of the sound speed and coefficient of absorption necessary for the acoustic calculations.

#### **Preliminary results**

The 75 kHz frequencies data from the ADCP echo signal revealed a wide range sound scattering layer from the surface to approximate 1000 m. Thus, it could reflect the biomass distribution and variance from on-shore to off-shore, an example is shown for transect 1 (Fig. 23). The white thick line represents the bottom of the sea and the data below white thick line is unavailable.



Fig. 23. The upper panel represents the correction echo strength (dB) from the echo return signal of ADCP and the lower panel represents the biomass of krill mainly (including other biology species) in transect 1.

#### References

Zhou M, Nordhausen W, Huntley M (1994) ADCP measurements of the distribution and abundance of euphausiids near the Antarctic Peninsula in winter. Deep-Sea Res I 41:1425-1445.

Zhou, M., & Dorland, R. D. (2004). Aggregation and vertical migration behavior of euphausia superba. Deep Sea Research Part II Topical Studies in Oceanography, 51(17–19), 2119-2137.

Zhou, M., Zhu, Y., & Tande, K. S. (2005). Circulation and behavior of euphausiids in two norwegian sub-arctic fjords. Marine Ecology Progress, 300(1), 159-178.

### 5.8. Fish and Macrozooplankton sampling

Guillaume Schuler (UiT), Stig Falk-Petersen (APN), Nicolas Weidberg (UiT)

#### **Objectives**

- 1) To study the abundance of predators, mostly in the mesopelagic layer (200-400 m), and measure morphometrics (length, weight and volume) of each individual.
- 2) To analyse the stomach contents to establish each species' position in the mesopelagic trophic web.

#### Materials and Methods

A Harstad pelagic trawl was deployed 16 times in the offshore areas of North Norway (table 14), from offshore South Lofoten to North Vesterålen, using an 8 mm mesh size with an opening area of 96 m<sup>2</sup>. Each trawl collected fish from roughly less than 180 000 m<sup>3</sup> of seawater: trawl height 8 m, trawl width 30 m, boat speed 3 knots = 9.26 m/min, sampling time 20 min  $\rightarrow$  volume sampled = 177 792 m<sup>3</sup>.

Time (UTC) Number Location St Nr Bridge Echo Depth Depth (m) Date Lat Lon Gear 29/04/2019 10:47 Trawl start 423 start 68 16.85 N 13 20.16 E 131 Pelagic trawl start 1 15 29/04/2019 11:07 Trawl end 423 end 68 17.74 N 13 18.81 E 151 Pelagic trawl end 13 17.31 E 29/04/2019 11:42 Trawl start 424 start 68 16.96 N 151 Pelagic trawl start 2 135 424 stop 29/04/2019 12:00 Trawl stop 68 17.63 N 13 15.62 E 157 Pelagic trawl end 30/04/2019 01:29 3 S5 68 54.28 N 012 04.89 E 290 431 Pelagic Trawl 4 **S6** 68 44.95 N 12 26.30 E 30/04/2019 08:26 439 306 Pelagic trawl 200 30/04/2019 09:39 5 **S6** 68 45.43 N 440 12 29.53 E 306 Pelagic trawl 600 S10 453 Pelagic trawl start 05/03/2019 10:05 69 01.11 N 12 55.07 E 6 1953 230 05/03/2019 10:25 **S10** 453 69 02.05 N 12 55.81 E Pelagic trawl end 05/03/2019 23:11 S12 476 68 52.01 N 13 18.95 E 587 Pelagic trawl start 7 20 05/03/2019 23:30 S12 476 68 30.06 N 13 20.35 E 461 Pelagic trawl end 05/04/2019 08:42 S13 477 69 30.06 N 13 20.35 E 2771 Pelagic trawl start 8 280 05/04/2019 09:03 477 69 31.19 N 13 19.94 E 2776 Pelagic trawl end S13 501 69 06.39 N 14 02.15 E Pelagic trawl start 05/05/2019 13:57 S15 908 9 220 501 Pelagic trawl end 05/05/2019 14:21 S15 69 06.75 N 14 02.15 E 1133 Pelagic trawl start 05/08/2019 18:35 S20 531 68 59.03 N 13 27.78 E 443 10 200 Pelagic trawl stop 05/08/2019 18:55 S20 531 69 00.10 N 13 29.29 E 681 05/09/2019 03:38 11 S21 541 69 03.21 N 13 14.25 E 2390 Pelagic trawl 260-270 05/09/2019 05:16 12 542 69 01.28 N 13 36.90 E 718 Pelagic trawl 200 S22 05/09/2019 15:48 557 69 05.87 N 14 04.14 E 797 Pelagic trawl start S24 13 280-320 05/09/2019 16:18 557 69 07.21 N 14 06.52 E 925 Pelagic trawl stop S24 05/09/2019 20:35 560 69 12.85 N 1995 Pelagic trawl 300 14 S25 13 55.01 E 05/10/2019 03:03 570 69 12.45 N 1203 400-350 15 S26 69 12.71 E Pelagic trawl 05/10/2019 07:38 573 69 06.98 N 14 14.99 E 597 S27 Pelagic trawl start 16 300 05/10/2019 08:04 573 69 08.27 N 14 14.89 E 576 Pelagic trawl stop S27

Table 14 : Overview of trawls sampled during the 2019 STRESSOR cruise

*The* trawl depth was planned to match the depth of the strongest soundscatter layer measured by the echosounder. After each trawl, the catch contents were processed in the fish-lab on board. For each fish and invertebrate species, every captured specimen was measured and counted, in order to record the abundance (number of individuals) and biomass (total weight). In case that too many individuals of one species were caught, sub-samples were taken. Ten individuals of each major species (or species of interest), along with flesh pieces, were frozen for further analyses back in Tromsø. The stomach of each predator was opened on board in order to identify, count and weight prey species to the lowest taxonomic level possible. If too many predators were caught, some stomachs were put in alcohol for

further processing at the UiT laboratory. Later, the size distribution of the prey species contained in the stomachs will be compared to the size distribution of the same prey species in the environment, to infer potential prey selectivity of the mesopelagic predators. In addition, fatty acid analyses of the frozen predator flesh samples will be performed for further long term information on diets.



Fig. 24: 1) Whitings. 2) Saithe's stomach content. a) Likely blue whitings. b) Krill. 3) Whiting's stomach content (trawl 13). a) A Pandalus and krill b) Blue whiting. 4) a) Saithe. b) Deepwater redfish. 5) Myctophids Benthosema sp. with parasites. 6) a) All white shrimps. b) Themistos. c) Shrimps. d) Clione limacina. e) Jellyfish.

#### Preliminary results

Regardless of the species, a lot of individuals have been found with empty stomachs. The following organisms were found in the trawls (figure 24): krill (mostly *Meganyctiphanes norvegica*, but also *Thysanoessa raschii*), *Clione limacina*, Chaetognaths, *Themisto*, squids, jellyfishes, but also shrimps (*Pandalus* red ones, red headed with white body ones and all whites) and two big copepods at trawl 9 (*Paraeuchaeta*). The following fishes were caught as well (figure 24): blue whitings, saithes, myctophids (both *Maurolicus* sp. and *Benthosema* sp.), a white barracudina and a greenland halibut (trawl 5), herrings (*Clupea harengus*), Atlantic cods (*Gadus morhua*), haddocks (*Melanogrammus* 

*aeglefinus*), whitings (*Merlangius merlangus*) and a deepwater redfish at the last trawl. Regarding the stomach analyses, several different results were obtained (figure 24). At trawl 5, a greenland halibut and a saithe have been caught (among others). By opening their stomachs, two different diets were found. The saithe had a full stomach (90-100% estimated fullness) of krill, almost only *Thysanoessa raschii*, whereas the greenland halibut only fed on *Pandalus* shrimps, which fed on krill. At trawl 13, 8 whitings were caught. In the second biggest whiting's stomach, there were krill (both *Meganyctiphanes norvegica* and *Thysanoessa raschii*), a *Pandalus* and even a blue whiting. At other trawls, blue whitings were found with krill in their stomachs, so it is possible to establish both species' position in the trophic web.

# 5.9. Marine mammal research

Sofia Aniceto (UiT)

#### Background

The Lofoten-Vesterålen region is an area with high commercial interest to both the petroleum and fishing, where marine mammals have economic importance (tourism) as well as conservation interest. Current survey methodology in sea mammal research relies primarily on visual observation at a limited spatial and temporal scale. Such surveys are often time demanding and require the deployment of research vessels and manpower, which are costly. Marine mammals spend a considerable time under water often vocalizing, and the use of acoustic equipment and suitable methods to interpret the recordings are increasingly important. During this research cruise, we evaluate marine mammal distribution during the spring bloom and in relation to copepod super swarms.



Fig. 25. Whale observations during the cruise.

#### Methods

Visual observations were made from FF Helmer Hansen bridge using the naked eye and validation was made with binoculars. The observations were recorded always facing ahead of the ship, covering

approximately 180 degrees. To cover several parts of the day, in case distribution is based on time of day, observations were made for two hours and every four hours, from sunrise to sunset. Upon detection the species, number of individuals, and position were recorded. Observations collected by other people outside of the observation period were also noted. However, there is a degree of uncertainty in these detections as observer expertise in species identification and group size estimates is not known. Given the distance to horizon provided by the crew (12 km) and given that distance sampling is not part of the goals of this expedition (for abundance estimates), range to animals sighted was not calculated. Furthermore, a threshold for sea state (Beaufort scale) conditions was established. No observations were to be made above sea state 4. Observations collected during periods with higher sea state conditions are often underestimates of the true number of animals, given the effect of swell, wind, and visibility conditions on observer performance. For the purpose of this expedition, and to provide a minimum number of animals recorded, sporadic detections recorded under such conditions were considered for analysis. Furthermore, we deployed a Seaglider (Kongsberg), which operated in the region of the LoVe Cabled Ocean Observatory (led by the Institute of Marine Research and Equinor) and collected environmental, echosounder, and hydrophone data. We combine the results from visual and acoustic surveys to estimate marine mammal distribution during the spring bloom, and assess changes in vocal behavior of the animals.

#### **Preliminary results**

Ten animals were detected during the surveys, two of which were unidentified species observed by members of the crew of Helmer Hansen. The species most detected was the sperm whale, primarily sighted in the Bleik canyon region (Fig. 22). No whales were visually detected during super swarm events. The low number of sightings was connected with the harsh winds and swell encountered during the surveys. Additionally, reports from the local whale hunting efforts showed that the numbers of minke whales in this region are considerably lower than previous years, and whalers were moving further north towards Finnmark in search for more animals (Nikolaisen 2019).

Data collected by the acoustic sensors will be provided at a later stage, as this requires access and download of data files from local servers. Though the effects of weather should be evident in hydrophone data and cause an increase in background noise, it is expected more whale detections than visually. Deep diving species such as sperm whales spend significantly more time underwater than at the surface in search for prey, whilst other species will often have different foraging strategies and are therefore less predictable in terms of their underwater behavior and distribution.

#### References

Nikolaisen K., 2019. Laber uke for hvalfangerne. Lofotposten [available online at <u>https://www.lofotposten.no/kval/fiskeri/norges-rafisklag/laber-uke-for-kvalfangerne/s/5-29-485313</u>]

# 6. Impressions from the artists

#### Michaela Casková

The curatorial team of Lofoten International Art Festival (LIAF) 2019 have been invited to collaborate with UiT The Arctic University of Norway and their research project Stressor. Liaf has been offered 2 spaces on the cruise and I am happy I could be one of invited artists-on-board, together with Toril Johanessen. I was part of international group of scientists who were willing to share their knowledge and also let me get involved during samplings in many stations. Being an editor of Stressor blog was also important task allowing me to be in touch with many and kept me updated on different stages of research on daily bases.

I have long term special interest in the intersection between art, science, and sustainable practices relating to food, travel, and energy. I therefore intended to learn a lot about a specialised strand of research during this expedition. My previous and ongoing collaborations aims to promote critical thinking, skills and enquiry-based and projects focused on sustainable values and lifestyle, ecological

and cultural diversity. The opportunity to learn more about ancient marine organisms, research practice, individual attitudes, role of science in geopolitical means as well as local questions, were definitely some of main valuable points of trip for me.

I feel like I have learned more than I can at the moment reflect and that some time for settling all impressions and grounding new information is needed.

During the cruise I concentrated on observing and collecting material and data on weather that definitely was a significant factor on life on board. Weather in times of climate change is one of my biggest themes. Observing how numbers and data really feel and how they affect our behavior and action interested me also on Helmer Hanssen.

I envision that my weather notes based on life on boat will transform into temporary weather observation space and will be presented during LIAF main exhibition venue in Svolvær in Lofoten between 30<sup>th</sup> of August and 27<sup>th</sup> of September 2019.

www.naposedu.cz +358 45 1967234

### Toril Johannessen

I joined the STRESSOR cruise halfway when Helmer Hanssen was docking in Svolvær Monday 6th of May. My participation happened on invitation from the curators of Lofoten International Art Festival (LIAF). For the LIAF exhibition in Svolvær in September I am invited to show already existing works from a series of graphs entitled "Words and Years", and to do a performance or oral presentation within their program of lectures and events on the topic of statistics. The objective of my participation on the cruise was to get acquainted with the scientific research onboard and possibly make use of this experience in the preparations for my presentation at LIAF.

Through informal conversations, roaming around the labs, and the daily lectures by the researchers onboard, I learned about *Calanus finmarchicus* and the various research methods carried out. The range of modes of observation involved in the process of collecting data was wide, from sophisticated technologies including autonomous vessels, satellites and machine learning, to basic observation methods like eye observation only aided by binoculars. This interests me as an artist and a citizen, because the observations involved in scientific research - and the technological and institutional aspects that enables the research to be made - are so fundamental for our society: What I see when I look at the screens onboard with numbers and graphs that I only understand a fraction of, is that ultimately, the painstakingly collected data will add to the knowledge on which future decisions might be based - such as decisions on environmental policy, industry and quotas.

Artistic research can be a long and squiggly process, and less systematic than what the word research may suggest in other fields. As an artist on a scientific research cruise, I was in good company with my colleague Michaela Casková. We attempted to unpack the "mystery" of artists-onboard a bit by giving short presentations on our work. I presented a selection of three projects from the past 10 years, giving a brief outline of work methods and interests. The works I presented included the graphs from the series "Words and Years"; a film with marine micro-organisms entitled "Reclaiming Vision", and a current project with AI generated images of trees entitled "Skogsaken". By speaking about these works I wanted to give an impression of what my work process can be like, for instance through how I make use of history, facts and collected data in combination with idiosyncratic methods and fiction.

# 7. Talks presented during the cruise:

- 1. Guillaume Schuler
- 2. Jordan Grigor: Unravelling the mysteries of the zooplankton.
- 3. Kim S. Last: The Moon, the Clock and the Fat Copepod.
- 4. Mathilde Servan: Seasonal variation in astaxanthin pigmentation of a North Atlantic copepod.
- 5. Michaela Casková: Weather in me.

6. Nicholas Weidberg: Spatial assemblages and patch formation mechanisms in *C. finmarchicus* populations off Northern Norway.

7. Stig Falk-Petersen: Mesopelagic layers in the European Arctic: seasonal migrations and trophic interactions.

8. Sünnje Basedow: Fishing for Calanus.

- 9. Toril Johannessen: Artistic Research.
- 10. Walker Smith: Biological Oceanography in the Ross Sea, Antarctica: A brief story.
- 11. Yisen Zhong: A first glance of ADCP data.
- 12. Yonghui Gao: Preliminary data summary of net community production during STRESSOR.
- 13. Zhaoru Zhang: Physical control on the biogeochemical processes in the Yangtze River estuary.

# 8. Planned publications, as of now

1. Falk-Petersen S, Pedersen G, Geoffroy M, Basedow S et al.: Trophic structure and biomass of the mesopelagic layers off Lofoten.

2. Smith W et al.: Grazing impacts on phytoplankton distributions in the Lofoten region of coastal Norway.

3. Servan M et al.: Seasonal variation in astaxanthin pigmentation of copepods in relation to phytoplankton.

4. Aniceto S. et al.: Assessing Norwegian cetacean distribution from marine bioacoustics systems and visual observations.

5. Zhong Y. et al.: Symmetric instability on the Norwegian Slope Current

6. Grigor J, Last K et al.: Lipid and buoyancy control of *Calanus* super swarms in the sub-arctic.

7. Gao Y. et al.: Net community production in the spring of the Norwegian Sea.

8. Basedow SL et al: Surface patches of *Calanus* revisited: the role of physical mechanisms and behaviour.

# 9. In the media [in Norwegian]

liaf.no, 12th April: LIAF på tokt med forskningsfartøyet Helmer Hanssen.

Lofotposten 14th April. Knut Johansen: Supersvermer av raudåte utenfor Lofoten og Vesterålen.

Bladet Vesterålen 10<sup>th</sup> May. Mareno Leonhardsen: Jakter på raudåtas hemmelige liv.

forskning.no 12<sup>th</sup> May. Stig Falk-Petersen, Sünnje Basedow, Geir Pedersen: Et kart fra 1539 kan skjule hemmeligheten bak de gode fiskeområdene utenfor Lofoten.

Bladet Vesterålen 21<sup>st</sup> May. Stig Falk-Petersen, Sünnje Basedow, Geir Pedersen: Kart fra 1539 kan skjule en hemmelighet utenfor Lofoten.

www.stressor.lofoten-research.no